Control Of Cellular Energy Metabolism
细胞能量代谢的控制
基本信息
- 批准号:10707814
- 负责人:
- 金额:$ 156.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcuteAerobicAnimalsBacteriaBasal metabolic rateBehaviorBiologicalBiological ModelsBlood flowCalciumCardiacCellsCellular Metabolic ProcessCollaborationsContrast MediaDataDevicesDiffuseElectron MicroscopyElectron Transport Complex IIIEnergy MetabolismEquilibriumEvaluationEventExposure toFluorescenceFree EnergyGenerationsGenomeGoalsHealth SciencesHeartHeart RateHeatingHomeostasisHormonalHumanImageInterventionInvestigationIschemiaKidneyKnock-outLaboratoriesLaboratory StudyLasersLightLiverLiver MitochondriaLungMagnetic Resonance ImagingMammalsMeasuresMedicalMembrane PotentialsMetabolicMethodsMitochondriaMitochondrial MatrixModelingModernizationMolecularMonitorMorphologyMultiprotein ComplexesMusOpticsOrganellesOxidation-ReductionOxidative PhosphorylationOxidative RegulationOxygenOxygen ConsumptionParacoccus denitrificansPathway interactionsPhasePhysiologic MonitoringPhysiological ProcessesPost-Translational Protein ProcessingPotential EnergyProductionProteomicsProton-Motive ForceProtonsReactive Oxygen SpeciesRecoveryRegulationReperfusion InjuryReperfusion TherapyResolutionRestReticulumShrewsSkeletal MuscleSpectrum AnalysisStriated MusclesStructureSystemSystems BiologyTimeTissuesUnited States National Institutes of HealthUniversitiesWorkWorkloadbasebasolateral membranebiological systemsbody systemchromophorecostin vivoinsightinterestlight transmissionmagnetic fieldmetabolic imagingmetabolic ratemetabolomicsmicrobiome researchmicroorganismminimally invasivemitochondrial membranenoveloperationoxidationprogramsprotein structureradio frequencyresponsescreeningtransmission processventilation
项目摘要
The purpose of these studies is to establish a better understanding of the energy metabolism of biological tissues using modern system biology approaches. Towards this goal, the laboratory concentrates on the use of screening approaches in proteomics, metabolomics, protein structure, post-translational modifications, minimally invasive metabolic imaging information and optical spectroscopy. One of the major hypothesizes in this program is that the activity of the multi-protein Complexes that perform Oxidative Phosphorylation are coordinated in some fashion to balance the rate of ATP production with utilization in the cell. This results in the observed metabolic homeostasis where the potential energy for doing work is maintained near constant in the cell even during major alterations in workload. The following major findings were made over the last year: 1)We have expanded our transmission optical spectroscopy investigation of the functioning of mitochondria in the intact beating heart to focus on ischemic reperfusion in the mouse heart model working with the MRC group at Cambridge University. We have also validated the use of the chromophores of Complex III of oxidative phosphorylation to provide a non-invasive determination of mitochondrial membrane potential in the beating heart. Using this approach we have established the dynamics of the mitochondrial membrane potential and overall redox poise of the mitochondria during ischemia, contraction and reperfusion under a variety of conditions. Initial findings suggest a rapid recovery of the mitochondria membrane potential at reperfusion that could contribute to both reactive oxygen species generation as well as the accumulation of Ca in the mitochondria matrix. Both of these events could contribute to mitochondria damage during the reperfusion phase and methods to differentiate these complications are being evaluated (see Below). We are continuing to develop a new model to perform these optical studies on the heart, in vivo. 2) We have completed a full 3D high resolution electron microscopy screen on hearts exposed to different degrees of ischemia before the reperfusion event. These studies demonstrate highly heterogenous morphological responses while a degradation of the mitochondria reticulum, previously described by our lab as critical in energy distribution in the heart. These data may suggest that the degradation of the mitochondria reticulum may be one of the early damage events in reperfusion injury. 3) Working with Dr. Murphy, we have developed a system using RHOD2 as a fluorescent indicator of mitochondrial free calcium in the intact perfused heart that permits the monitoring of the fluorescence from RHOD2 while tracking the primary and secondary filtering of light by the heart wall. This is done by alternating a white light transmission study with a 532nm laser fluorescence study in the same heart over time. This permits the correction of primary and secondary optical filtering of the fluorescent data that has been a major problem in intact tissue studies in the past. Using this approach we have made the surprising observation that mitochondrial calcium does not increase when one of the putative major calcium transports, MCU, is knocked out but the metabolic and functional response to hormonal stimulation is unchanged. This result demonstrates that changes in intramitochondrial calcium are not required for modest increases in workload in the heart. This finding suggests that one of the current models of cardiac energy regulation by mitochondria matrix calcium. We are currently expanding this approach to monitor reactive oxygen species generation in the heart under reperfusion conditions. 4) To broaden our analysis of metabolic regulation in the mitochondria we have expanded our studies to study the ancestors of mitochondria, simple bacteria. We have recently completed our initial studies on isolated bacteria believed to be closest to the mitochondrial origins, paracoccus denitrificans(PD). The goal of these studies is to unravel acute energy conversion regulation in this bacterium and then look for similar mechanisms in mammalian mitochondria. With the growing interest in the microbiome, these studies should also provide new insight into the acute regulation of bacterial energy metabolism that has not been extensively studied. We demonstrated in this period that the previously described metabolic homeostasis described in the mammalian heart, that is constant free energy available in ATP as well as the mitochondria proton motive during increases is workload, exists in PD. That is PD can increase it metabolic rate by over 8 fold and maintain constant proton motive force as well as increase ATP content. Currently we are specifically looking for the enzymatic pathways in substrate oxidation that are regulated by work in the bacterium. It is hoped that this simple system will provide insight into the molecular mechanisms involved in the regulation of oxidative phosphorylation in mammalian mitochondria. 4) Another classical approach to studying physiological process like the control of energy metabolism, is to look at extreme cases. In mammals, the shrew represents one of the highest resting metabolic rates with a resting heart rate approaching 1000 beats/min. We are studying the shrew with hopes of understanding how this animal has adapted to these extreme metabolic rates will provide insight into the human condition. We have successfully established one of the two Cryptotis parva shrew colonies in the world with the help of Dr. Nissar Darmani at Western University of Health Sciences. We have completed the genome of this animal, a proteomic screen of its organ systems as well as a 3D FIBSEM examination of the mitochondria /tissue structure in heart, liver, kidney and skeletal muscle. These studies reveal the most extensive mitochondria reticulum system yet observed in the aerobic skeletal muscle while the heart structure seems relatively conserved even in comparison to larger animals. The most dramatic effect was in the liver where the mitochondria content is essentially equivalent to the heart, suggesting a major metabolic capacity in this small animals liver not present in larger species. This has led to a new hypothesis with regard to the distribution of mitochondria in mammalian tissues. Where the mitochondria and energy utilizing systems can be co-located such as the ER in liver and basolateral membrane of the kidney, the mitochondria are compartmentalized to meet the local needs. In tissues that have highly diffuse energy needs such as striated muscle, a mitochondria reticulum is necessary to deliver energy over nearly the entire cell. This hypothesis may explain the variance in mitochondria morphology in different tissues. 5) Together with numerous programs at the NIH and collaboration with Siemens Medical Systems we have developed a low field 0.55T MRI system for monitoring physiological and structural function in humans. In addition to its low cost, good image quality and contrast as well as the ability to tolerate the use of interventional devices without associated radiofrequency heating, we have exploited this magnetic field to evaluate gaseous oxygen as a MRI contrast agent permitting the evaluation of lung ventilation, delivery of oxygen to the heart and potentially the relative oxygen consumption by the heart when combined with blood flow measures.
这些研究的目的是利用现代系统生物学方法更好地了解生物组织的能量代谢。为了实现这一目标,实验室专注于蛋白质组学、代谢组学、蛋白质结构、翻译后修饰、微创代谢成像信息和光谱学中筛选方法的使用。该计划的主要假设之一是,执行氧化磷酸化的多蛋白复合物的活性以某种方式协调,以平衡细胞中 ATP 产生率和利用率。这导致了观察到的代谢稳态,即使在工作量发生重大变化时,细胞中做功的潜在能量也保持接近恒定。去年取得了以下主要发现:1)我们与剑桥大学 MRC 小组合作,扩大了对完整跳动心脏中线粒体功能的透射光谱研究,重点关注小鼠心脏模型中的缺血再灌注。我们还验证了氧化磷酸化复合物 III 的发色团的使用,以提供跳动心脏中线粒体膜电位的非侵入性测定。使用这种方法,我们建立了各种条件下缺血、收缩和再灌注期间线粒体膜电位和线粒体整体氧化还原平衡的动态。初步研究结果表明,再灌注时线粒体膜电位快速恢复,这可能有助于活性氧的产生以及线粒体基质中 Ca 的积累。这两种事件都可能导致再灌注阶段线粒体损伤,并且正在评估区分这些并发症的方法(见下文)。我们正在继续开发一种新模型,以在体内对心脏进行这些光学研究。 2) 我们已经对再灌注事件前暴露于不同程度缺血的心脏完成了完整的 3D 高分辨率电子显微镜屏幕。这些研究证明了高度异质的形态反应,同时线粒体网状结构退化,我们的实验室之前将其描述为对心脏能量分布至关重要。这些数据可能表明线粒体网状的降解可能是再灌注损伤的早期损伤事件之一。 3) 与墨菲博士合作,我们开发了一种系统,使用 RHOD2 作为完整灌注心脏中线粒体游离钙的荧光指示剂,允许监测 RHOD2 的荧光,同时跟踪心壁对光的初级和次级过滤。这是通过在同一心脏中随着时间的推移交替进行白光透射研究和 532 nm 激光荧光研究来完成的。这允许对荧光数据的初级和次级光学过滤进行校正,这在过去是完整组织研究中的一个主要问题。使用这种方法,我们做出了令人惊讶的观察,即当假定的主要钙转运之一 MCU 被敲除时,线粒体钙不会增加,但对激素刺激的代谢和功能反应没有改变。这一结果表明,线粒体内钙的变化并不是心脏工作负荷适度增加所必需的。这一发现表明当前的心脏能量调节模型之一是通过线粒体基质钙进行的。 我们目前正在扩展这种方法来监测再灌注条件下心脏中活性氧的产生。 4)为了扩大我们对线粒体代谢调节的分析,我们扩大了研究范围,研究线粒体的祖先,简单的细菌。我们最近完成了对被认为最接近线粒体起源的分离细菌——脱氮副球菌(PD)的初步研究。这些研究的目的是解开这种细菌的急性能量转换调节,然后在哺乳动物线粒体中寻找类似的机制。随着人们对微生物组的兴趣日益浓厚,这些研究也应该为尚未得到广泛研究的细菌能量代谢的急性调节提供新的见解。我们在这一时期证明,先前描述的哺乳动物心脏中的代谢稳态,即 ATP 中可用的恒定自由能以及工作负荷增加期间线粒体质子动力,存在于 PD 中。即PD可以使其代谢率提高8倍以上,并保持恒定的质子动力,并增加ATP含量。目前,我们正在专门寻找受细菌作用调节的底物氧化酶途径。 希望这个简单的系统能够深入了解哺乳动物线粒体氧化磷酸化调节所涉及的分子机制。 4)研究能量代谢控制等生理过程的另一种经典方法是观察极端情况。在哺乳动物中,鼩鼱是静息代谢率最高的动物之一,静息心率接近 1000 次/分钟。我们正在研究鼩鼱,希望了解这种动物如何适应这些极端的代谢率,从而深入了解人类的状况。在西方健康科学大学 Nissar Darmani 博士的帮助下,我们已成功建立了世界上两个隐翅鼩鼱栖息地之一。我们已经完成了该动物的基因组分析、其器官系统的蛋白质组筛选以及心脏、肝脏、肾脏和骨骼肌线粒体/组织结构的 3D FIBSEM 检查。这些研究揭示了在有氧骨骼肌中迄今为止观察到的最广泛的线粒体网状系统,而即使与较大的动物相比,心脏结构似乎也相对保守。最显着的影响是在肝脏中,其中线粒体含量基本上相当于心脏,这表明这种小动物肝脏具有较大物种所不具备的主要代谢能力。 这导致了关于哺乳动物组织中线粒体分布的新假设。在线粒体和能量利用系统可以共存的地方,例如肝脏中的内质网和肾脏基底外侧膜,线粒体被划分以满足局部需求。在横纹肌等能量需求高度分散的组织中,线粒体网对于几乎整个细胞传递能量是必需的。这一假设可以解释不同组织中线粒体形态的差异。 5) 通过与 NIH 的众多项目以及与西门子医疗系统的合作,我们开发了一种低场 0.55T MRI 系统,用于监测人类的生理和结构功能。除了其低成本、良好的图像质量和对比度以及无需射频加热即可耐受使用介入设备的能力之外,我们还利用该磁场来评估气态氧作为 MRI 造影剂,从而可以评估肺通气、向心脏输送氧气以及与血流测量相结合时心脏的相对耗氧量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Balaban其他文献
Robert Balaban的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Balaban', 18)}}的其他基金
Intra-vital microscopy using non-linear optical techniques
使用非线性光学技术的活体显微镜检查
- 批准号:
8746581 - 财政年份:
- 资助金额:
$ 156.49万 - 项目类别:
Intra-vital microscopy using non-linear optical techniques
使用非线性光学技术的活体显微镜检查
- 批准号:
9560568 - 财政年份:
- 资助金额:
$ 156.49万 - 项目类别:
Intra-vital microscopy using non-linear optical techniques
使用非线性光学技术的活体显微镜检查
- 批准号:
8557939 - 财政年份:
- 资助金额:
$ 156.49万 - 项目类别:
Intra-vital microscopy using non-linear optical techniques
使用非线性光学技术的活体显微镜检查
- 批准号:
9361009 - 财政年份:
- 资助金额:
$ 156.49万 - 项目类别:
Intra-vital microscopy using non-linear optical techniques
使用非线性光学技术的活体显微镜检查
- 批准号:
7969077 - 财政年份:
- 资助金额:
$ 156.49万 - 项目类别:
相似海外基金
The effects of acute aerobic exercise on hippocampal function and microstructure in older adults
急性有氧运动对老年人海马功能及微结构的影响
- 批准号:
10548811 - 财政年份:2022
- 资助金额:
$ 156.49万 - 项目类别:
The effects of acute aerobic exercise on hippocampal function and microstructure in older adults
急性有氧运动对老年人海马功能及微结构的影响
- 批准号:
10314779 - 财政年份:2022
- 资助金额:
$ 156.49万 - 项目类别:
The effects of acute aerobic exercise on hippocampal function and microstructure in older adults
急性有氧运动对老年人海马功能及微结构的影响
- 批准号:
10580466 - 财政年份:2022
- 资助金额:
$ 156.49万 - 项目类别:
The Effects of Blood Flow Restriction During Acute Aerobic Exercise on Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1a) Expression
急性有氧运动期间血流限制对过氧化物酶体增殖物激活受体γ共激活物1-α(PGC-1a)表达的影响
- 批准号:
529237-2018 - 财政年份:2018
- 资助金额:
$ 156.49万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
The Influence of Acute Bouts of Aerobic Exercise on Neuroplasticity and Motor Learning after Stroke
急性有氧运动对中风后神经可塑性和运动学习的影响
- 批准号:
343900 - 财政年份:2016
- 资助金额:
$ 156.49万 - 项目类别:
Operating Grants
The potentiation of neurovascular coupling in cognitive-brain areas following acute aerobic exercise
急性有氧运动后认知脑区域神经血管耦合的增强
- 批准号:
460143-2014 - 财政年份:2016
- 资助金额:
$ 156.49万 - 项目类别:
Postgraduate Scholarships - Doctoral
The effects of acute aerobic exercise on memory function
急性有氧运动对记忆功能的影响
- 批准号:
15K12687 - 财政年份:2015
- 资助金额:
$ 156.49万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
The potentiation of neurovascular coupling in cognitive-brain areas following acute aerobic exercise
急性有氧运动后认知脑区域神经血管耦合的增强
- 批准号:
460143-2014 - 财政年份:2015
- 资助金额:
$ 156.49万 - 项目类别:
Postgraduate Scholarships - Doctoral
Potential for gene expression by acute aerobic exercise with locally force of muscle
局部肌肉力量急性有氧运动的基因表达潜力
- 批准号:
26750317 - 财政年份:2014
- 资助金额:
$ 156.49万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The potentiation of neurovascular coupling in cognitive-brain areas following acute aerobic exercise
急性有氧运动后认知脑区域神经血管耦合的增强
- 批准号:
460143-2014 - 财政年份:2014
- 资助金额:
$ 156.49万 - 项目类别:
Postgraduate Scholarships - Doctoral