Macromolecular Structure of Arterial Walls

动脉壁的大分子结构

基本信息

项目摘要

The arterial wall and arterial valves are complex macromolecular structures. One of the major elements of these structures is the scaffold that provides the strength and flexibility to perform the task in hand either retaining the blood in vessels against the arterial pressure or maintaining pressure via the function of coronary valves. In the last several years it has become apparent that the actual microstructure and composition of these macromolecules could influence the progress of different disease states most notably atherosclerosis and value calcification. To gain a better understanding of this process, we have embarked on studies to understand the fine structure of the macromolecules in arterial vascular bed using a novel optical imaging technique that relies on the non-linear excitation (NLE) of collagen and elastin to provide sub-micron images of their structure in unfixed fresh samples together with direct measures of low density lipoprotein particles (LDL) binding using fluorescence microscopy and conventional histology methods. These studies have identified decorin and biglycan as the major binding sites for LDL in the valve leaflet and renal ostia. Based on the relative concentration of the interaction sites of decorin/biglycan and LDL, we have decided to target the LDL electrostatic binding sites to evaluate the interference of this interaction in the progression of atherosclerosis. Specific modification of the LDL lysine amino acid residues as well as model molecules such as Heparin sulfate has demonstrated that this strategy is feasible by significantly inhibiting LDL association with decorin in specially designed in vitro assays. One of the major issues is to find molecules with high affinity to the LDL sites with minimum off target activity. Currently we are working with industry partners to evaluate other candidate molecules for attempting to block the LDL-decorin interaction. If successful finding high affinity inhibitors, in vitro, we will initiate studies in the atherosclerotic prone transgenic mouse models. With this goal in mind, we have initiated studies in normal and atherosclerosis prone transgenic mice to correlate the development of the arterial macromolecular structures using NLE microscopy. In addition, CARS microscopy directly observing the fatty acid C-H bonds will also be used to complete the minimally invasive approach evaluation of the development of atherosclerotic disease in this animal model. This study when completed will provide an in depth analysis of the development of the macromolecular structures of the arterial wall in a mammalian model and permit the background for chronic studies with different strategies to reduce atherosclerosis.
动脉壁和动脉瓣是复杂的大分子结构。这些结构的主要元件之一是支架,其提供强度和柔性以执行手头的任务,或者将血液保持在血管中以抵抗动脉压力,或者通过冠状动脉瓣膜的功能来维持压力。在过去的几年中,已经变得明显的是,这些大分子的实际微观结构和组成可以影响不同疾病状态的进展,最显着的是动脉粥样硬化和钙化。为了更好地理解这一过程,我们已经开始研究,利用一种新的光学成像技术来了解动脉血管床中大分子的精细结构,该技术依赖于胶原蛋白和弹性蛋白的非线性激发(NLE),以提供未固定新鲜样本中其结构的亚微米图像,以及低密度脂蛋白颗粒(LDL)的直接测量结合使用荧光显微镜和常规组织学方法。这些研究已经确定核心蛋白聚糖和双糖链蛋白聚糖是瓣膜小叶和肾口中LDL的主要结合位点。基于核心蛋白聚糖/双糖链蛋白聚糖和LDL相互作用位点的相对浓度,我们决定靶向LDL静电结合位点,以评估这种相互作用在动脉粥样硬化进展中的干扰。LDL赖氨酸氨基酸残基以及模型分子如硫酸肝素的特异性修饰已经证明,通过在专门设计的体外测定中显著抑制LDL与核心蛋白聚糖的结合,这种策略是可行的。主要问题之一是找到对LDL位点具有高亲和力且具有最小脱靶活性的分子。目前,我们正在与行业合作伙伴合作,以评估其他候选分子,试图阻止LDL-核心蛋白聚糖相互作用。如果在体外成功找到高亲和力的抑制剂,我们将在易患动脉粥样硬化的转基因小鼠模型中开展研究。 考虑到这一目标,我们已经在正常和动脉粥样硬化倾向的转基因小鼠中开始了研究,以使用NLE显微镜来关联动脉大分子结构的发展。此外,直接观察脂肪酸C-H键的汽车显微镜也将用于完成该动物模型中动脉粥样硬化疾病发展的微创方法评价。这项研究完成后,将提供一个深入分析的发展,动脉壁的大分子结构在哺乳动物模型,并允许背景的慢性研究与不同的策略,以减少动脉粥样硬化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Balaban其他文献

Robert Balaban的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Balaban', 18)}}的其他基金

Intra-vital microscopy using non-linear optical techniques
使用非线性光学技术的活体显微镜检查
  • 批准号:
    8746581
  • 财政年份:
  • 资助金额:
    $ 3.72万
  • 项目类别:
Intra-vital microscopy using non-linear optical techniques
使用非线性光学技术的活体显微镜检查
  • 批准号:
    9560568
  • 财政年份:
  • 资助金额:
    $ 3.72万
  • 项目类别:
Intra-vital microscopy using non-linear optical techniques
使用非线性光学技术的活体显微镜检查
  • 批准号:
    8557939
  • 财政年份:
  • 资助金额:
    $ 3.72万
  • 项目类别:
Control Of Cellular Energy Metabolism
细胞能量代谢的控制
  • 批准号:
    10707814
  • 财政年份:
  • 资助金额:
    $ 3.72万
  • 项目类别:
Control Of Cellular Energy Metabolism
细胞能量代谢的控制
  • 批准号:
    8158026
  • 财政年份:
  • 资助金额:
    $ 3.72万
  • 项目类别:
Macromolecular Structure of Arterial Walls
动脉壁的大分子结构
  • 批准号:
    8158035
  • 财政年份:
  • 资助金额:
    $ 3.72万
  • 项目类别:
Intra-vital microscopy using non-linear optical techniques
使用非线性光学技术的活体显微镜检查
  • 批准号:
    9361009
  • 财政年份:
  • 资助金额:
    $ 3.72万
  • 项目类别:
Macromolecular Structure of Arterial Walls
动脉壁的大分子结构
  • 批准号:
    8344838
  • 财政年份:
  • 资助金额:
    $ 3.72万
  • 项目类别:
Macromolecular Structure of Arterial Walls
动脉壁的大分子结构
  • 批准号:
    8939820
  • 财政年份:
  • 资助金额:
    $ 3.72万
  • 项目类别:
Control Of Cellular Energy Metabolism
细胞能量代谢的控制
  • 批准号:
    8939787
  • 财政年份:
  • 资助金额:
    $ 3.72万
  • 项目类别:

相似海外基金

Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
  • 批准号:
    BB/Y006380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
  • 批准号:
    24K17112
  • 财政年份:
    2024
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
  • 批准号:
    23K04668
  • 财政年份:
    2023
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
  • 批准号:
    23K06918
  • 财政年份:
    2023
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
  • 批准号:
    23K05758
  • 财政年份:
    2023
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
  • 批准号:
    2888395
  • 财政年份:
    2023
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 3.72万
  • 项目类别:
    Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
  • 批准号:
    10761044
  • 财政年份:
    2023
  • 资助金额:
    $ 3.72万
  • 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
  • 批准号:
    10728925
  • 财政年份:
    2023
  • 资助金额:
    $ 3.72万
  • 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
  • 批准号:
    10757309
  • 财政年份:
    2023
  • 资助金额:
    $ 3.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了