Real-World Data Estimates of Racial Fairness with Pharmacogenomics-Guided Drug Policy
以药物基因组学为指导的药物政策对种族公平性的真实世界数据估计
基本信息
- 批准号:10797705
- 负责人:
- 金额:$ 24.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-25 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdoptionAgeAll of Us Research ProgramBlood PlateletsBody WeightCYP2C19 geneCase StudyCharacteristicsClinicalDataDecision MakingDetectionDoseEffectivenessElectronic Health RecordEligibility DeterminationEuropean ancestryFutureGenetic MarkersGenetic VariationGenotypeGuidelinesHealthHealthcare SystemsIndividualMeasuresMedical centerModelingOutcomeParticipantPatientsPerformancePersonsPharmaceutical PreparationsPharmacogenomicsPharmacotherapyPharmacy and Therapeutics CommitteePhenotypePoliciesPopulationProcessPublishingRaceRegimenResearchSafetySelective Serotonin Reuptake InhibitorServicesStructureTPMT geneTestingTherapeutics CommitteeTimeTranslatingUnited StatesWorkcomorbiditydata accessdemographicsgenome sequencinggenomic profileshealth disparityhealth inequalitiesimprovedinsightinterestlensobservational cohort studyoutcome disparitiesparityracial biasracial diversityracial populationresponserisk mitigationstructural determinantsthiopurinewhole genome
项目摘要
Project Summary
A pharmacogenomics-guided drug policy includes the genomic profile of an individual’s drug response with other
clinical characteristics (age, body weight, etc.) and may improve the safety and effectiveness of drug therapy.
Thus, in recent years several medical centers in the United States have implemented clinical pharmacogenomics
services to support such policies. Among the services that can be supported, preemptive clinical genotyping
services produce pharmacogenomic data before it is known that a particular drug may be needed by a patient.
Preemptive clinical genotyping services that cover genetic markers primarily based on populations of European
ancestry, however, can have reduced performance of a policy to identify well-tolerated medications in
understudied groups. Worse performance in the understudied groups is, in part, due to being more likely to have
an indeterminate drug response phenotype when compared to a European ancestry group. Having more
indeterminate drug response statuses in some racial subgroups translates in to more occurrences of “missing
data” in assessments of an individuals’ drug response, thus resulting in lower racial fairness. One possible
solution to this challenge of knowing if low racial fairness is a problem, is to estimate the pharmacogenomic-
guided drug policy performance and fairness for different racial subgroups a priori. The specific objective of
this project is to use All of Us research program (AoU) data to derive evidence of the potential unintended
consequence of low racial fairness that can exist with a new pharmacogenomic-guided drug policy. The
AoU data is uniquely suited to generate such evidence given that it includes a diversity of racial subgroups and
a variety of data types, including from electronic health records and clinical whole genome sequencing data. We
will conduct an observational cohort study using the AoU data to assess the performance of pharmacogenomics-
guided drug policies to identify well-tolerated medications (Aim 1), and quantify the potential impact of differential
data access among patients on performance (Aim 2). We will also study the impact of differential data access
on the racial fairness of pharmacogenomics-guided drug policy (Aim 3). Outcomes of this work will demonstrate
one strategy to produce evidence from real-world data that can be expanded upon and studied further in future
research. Presenting this type of evidence prior to approving pharmacogenomics-guided drug policy holds
promise to inform Pharmacy & Therapeutics committee decision-making.
项目摘要
药物基因组学指导的药物政策包括个体对其他药物的药物反应的基因组图谱。
临床特征(年龄、体重等)并且可以提高药物治疗的安全性和有效性。
因此,近年来,美国的几个医学中心已经实施了临床药物基因组学
支持这些政策。在可以支持的服务中,抢先临床基因分型
在知道患者可能需要某种药物之前,药物基因组学服务就产生了药物基因组学数据。
先发制人的临床基因分型服务,涵盖主要基于欧洲人群的遗传标记
然而,祖先可能会降低识别耐受性良好的药物的政策的性能,
被忽视的群体在未充分研究的群体中,表现更差的部分原因是,
与欧洲血统组相比,药物反应表型不确定。具有更多
在某些人种亚组中,不确定的药物应答状态转化为更多的“缺失”
在评估个人的药物反应时,“数据”,从而导致种族公平性降低。一个可能
解决这个问题的挑战,知道如果低种族公平是一个问题,是估计药物基因组学-
指导药物政策的性能和公平性,为不同的种族亚组的先验。的具体目标
该项目将使用美国所有研究计划(AoU)的数据来获得潜在的非预期证据
低种族公平性的后果,可能存在一个新的药物基因组学指导的药物政策。的
AoU数据是唯一适合产生这样的证据,因为它包括种族亚组的多样性,
各种数据类型,包括电子健康记录和临床全基因组测序数据。我们
将使用AoU数据进行观察性队列研究,以评估药物基因组学的性能-
指导药物政策,以确定耐受性良好的药物(目标1),并量化差异的潜在影响
患者之间的数据访问性能(目标2)。我们还将研究差异数据访问的影响
药物基因组学指导的药物政策的种族公平性(目标3)。这项工作的结果将证明
一种从真实世界的数据中产生证据的策略,可以在未来进一步扩展和研究
research.在批准药物基因组学指导的药物政策之前提交此类证据
承诺告知药学和治疗委员会的决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CASEY OVERBY TAYLOR其他文献
CASEY OVERBY TAYLOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CASEY OVERBY TAYLOR', 18)}}的其他基金
Clinical Decision Support for Unsolicited Genomic Results
主动提供的基因组结果的临床决策支持
- 批准号:
10318291 - 财政年份:2020
- 资助金额:
$ 24.56万 - 项目类别:
Clinical Decision Support for Unsolicited Genomic Results
主动提供的基因组结果的临床决策支持
- 批准号:
10436990 - 财政年份:2020
- 资助金额:
$ 24.56万 - 项目类别:
Clinical Decision Support for Unsolicited Genomic Results
主动提供的基因组结果的临床决策支持
- 批准号:
10672256 - 财政年份:2020
- 资助金额:
$ 24.56万 - 项目类别:
Clinical Decision Support for Unsolicited Genomic Results
主动提供的基因组结果的临床决策支持
- 批准号:
10251062 - 财政年份:2020
- 资助金额:
$ 24.56万 - 项目类别:
Clinical Decision Support for Unsolicited Genomic Results
主动提供的基因组结果的临床决策支持
- 批准号:
10606011 - 财政年份:2020
- 资助金额:
$ 24.56万 - 项目类别:
Electronic Health Record-linked Decision Support for Communicating Genomic Data t
与电子健康记录相关的决策支持,用于交流基因组数据
- 批准号:
8772968 - 财政年份:2014
- 资助金额:
$ 24.56万 - 项目类别:
Electronic Health Record-linked Decision Support for Communicating Genomic Data t
与电子健康记录相关的决策支持,用于交流基因组数据
- 批准号:
8930122 - 财政年份:2014
- 资助金额:
$ 24.56万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 24.56万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 24.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 24.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.56万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 24.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.56万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 24.56万 - 项目类别:
Standard Grant














{{item.name}}会员




