Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
基本信息
- 批准号:10798514
- 负责人:
- 金额:$ 23.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-25 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAlgorithmsAll of Us Research ProgramCardiotoxicityCaringClinicalClinical DataCodeCommunicationComputer softwareDataData AnalysesDevelopmentDiagnosisElectronic Health RecordEngineeringEthnic OriginEthnic PopulationGeneticGenetic HeterogeneityGenetic RiskGoalsGuide preventionHealthHealthcareHealthcare SystemsHeterogeneityIndividualInterventionLearningLinkMalignant NeoplasmsMedical GeneticsMethodsMiningMinorityMinority GroupsMinority ParticipationModelingOnset of illnessOutcomePatient Outcomes AssessmentsPatient riskPatientsPatternPerformancePopulationRaceReportingResearchResearch DesignResearch Project GrantsResolutionRheumatoid ArthritisRiskRisk EstimateRisk FactorsSample SizeSourceSurveysToesTrainingValidationcase-basedcohortdata exchangedata harmonizationdesigneconomic disparityempowermentevidence basefeature selectiongenetic informationgenetic risk factorgenome sequencinggenome wide association studyhealth equityimprovedinnovationlearning strategymalignant breast neoplasmmultimodal datamultimodalityopen sourceovertreatmentpatient populationpoint of careprecision medicinepredictive toolsprivacy preservationracial populationrisk predictionrisk prediction modelrisk stratificationsocialsocial health determinantsstatisticstooltraittransfer learningwhole genome
项目摘要
PROJECT SUMMARY/ABSTRACT
Advancement of health equity requires evidence and tools tailored for minority groups. The shift towards
individualized precision medicine requires risk prediction tools to guide prevention and intervention. Due to the
genetic heterogeneity and social economic disparity, risk factors may disproportionately impact race/ethnicity
(R/E) groups. Overall risk prediction constructed from predominantly white populations can perform poorly on
other ethnic groups, leading to mis-diagnosis, over-treatment and other adverse health consequences. Efforts
on developing R/E-specific risk prediction at local healthcare systems are limited by the small sample size
caused by inadequate representability of minority populations. To address the gap and to advance precision
medicine for non-white patients, it is crucial to harness minority enriched clinical data and develop risk models
transferable to point of care. The All of Us (AoU) program offers a wealth of comprehensive multi-modal data
on whole genome sequencing (WGS), real-world electronic health records (EHR) and patient reported
outcomes (PRO) with enhanced minority participation, providing the common evidence base for learning
general R/E-specific risk patterns and training risk models for minority populations at local healthcare systems.
In this proposal, we develop innovative methods for risk modeling in AoU data tailored for minority populations
and its validation on external healthcare data. We will showcase the proposed methods in two use cases: 1)
rheumatoid arthritis (RA) genome-wide association study (GWAS) at Mass General Brigham (MGB) focusing
on the genetic risk factors; 2) cancer cardiotoxicity prediction study at M Health Fairview (MHF) focusing on
clinical and social determinants of health (SDoH) risk factors. In Aim 1, we integrate risk factor and disease
onset outcome data across WGS, EHR and PRO in AoU data to construct the risk prediction model that yields
better risk prediction accuracy, risk factor identification and fairness across R/E groups. In Aim 2, we design
privacy preserving algorithms to validate the generalizability risk modeling from AoU data on external
healthcare data and establish the transfer learning strategy to adapt AoU risk models for local healthcare
systems. We intend for the methods to facilitate development of risk modeling using AoU data with focus on
minority populations, as well as toe demonstrate the potential impact of the AoU program on improving care at
local healthcare.
项目总结/摘要
促进健康公平需要针对少数群体的证据和工具。转向
个性化精准医疗需要风险预测工具来指导预防和干预。由于
遗传异质性和社会经济差异,风险因素可能不成比例地影响种族/族裔
(R/E)基团。从主要是白色人群构建的总体风险预测在以下人群中表现不佳:
其他族裔群体,导致误诊、过度治疗和其他不良健康后果。努力
在当地医疗保健系统开发R/E特定风险预测的研究受到样本量小的限制
这是由于少数民族的代表性不足造成的。解决差距并提高精度
对于非白人患者,利用少数族裔丰富的临床数据并开发风险模型至关重要
可转移到护理点。All of Us(AoU)计划提供了丰富的综合多模态数据
全基因组测序(WGS),真实世界的电子健康记录(EHR)和患者报告
提高少数群体的参与,为学习提供共同的证据基础
一般R/E特定的风险模式和培训风险模型,为少数群体在当地医疗保健系统。
在这项提案中,我们开发了针对少数群体量身定制的AoU数据风险建模的创新方法
以及其在外部医疗保健数据上的验证。我们将在两个用例中展示所提出的方法:1)
马萨诸塞州布里格姆(MGB)的类风湿性关节炎(RA)全基因组关联研究(GWAS),
遗传风险因素; 2)M Health Fairview(MHF)的癌症心脏毒性预测研究,重点是
健康的临床和社会决定因素(SDoH)风险因素。在目标1中,我们整合了风险因素和疾病
AoU数据中WGS、EHR和PRO的发病结局数据,以构建风险预测模型,
更好的风险预测准确性、风险因素识别和R/E组之间的公平性。在目标2中,我们设计
隐私保护算法,以验证来自外部AoU数据的概化风险建模
医疗保健数据,并建立迁移学习策略,以适应当地医疗保健的AoU风险模型
系统.我们打算使用AoU数据来促进风险建模的开发,重点是
少数民族人口,以及证明AoU计划对改善护理的潜在影响,
当地的医疗保健。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jue Hou其他文献
Jue Hou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 23.95万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 23.95万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 23.95万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 23.95万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 23.95万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 23.95万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 23.95万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 23.95万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 23.95万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 23.95万 - 项目类别:
Research Grant