Elucidation of mitochondrial mechanisms critical to mediating PFAS neurotoxicity
阐明对介导 PFAS 神经毒性至关重要的线粒体机制
基本信息
- 批准号:10805097
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvisory CommitteesAnalytical ChemistryAnimalsAntioxidantsBiochemicalBioenergeticsBiologicalBiological ModelsBrainCaenorhabditis elegansCarbonCarpetCarrier ProteinsCell Culture TechniquesCellsCharacteristicsChemicalsComplexDNA Sequence AlterationDataDefectDependenceDerivation procedureDevelopmentDevelopment PlansDopaminergic CellDoseEnvironmental HealthEquipmentEtiologyEvaluationEventFeedbackFluorineFutureGene ExpressionGenesGeneticGenus HippocampusGoalsHalf-LifeHealthHealth BenefitHealth HazardsHumanImpairmentIn VitroIndividualIndustrializationInterventionKnowledgeLRRK2 geneLaboratoriesLearningLightMediatingMentorsMetalsMethodsMitochondriaNematodaNerve DegenerationNeurodegenerative DisordersNeuronsOilsOrganellesOutcomeOxygen ConsumptionParkinson DiseasePathologicPathologyPathway interactionsPatientsPesticidesPhasePoly-fluoroalkyl substancesProgram DevelopmentProtein ImportProtonsPublic HealthPublishingReactive Oxygen SpeciesResearchResistanceRespirationRiskRisk FactorsRoleSeriesSoilStainsStructureStructure-Activity RelationshipSulfonic AcidsSystemTechniquesTeratogenic effectsTestingTimeToxic effectTrainingTransgenic OrganismsUnited States National Institutes of HealthValidationWaterWater PollutantsWhole OrganismWorkadverse outcomealpha synucleinanthropogenesiscareercareer developmentcomparativedopamine toxicitydopaminergic neuronexperimental studyexposed human populationgene environment interactionin vitro Modelin vivoinduced pluripotent stem cellknock-downmeetingsneurodevelopmental effectneuropathologyneurotoxicneurotoxicityoverexpressionperfluorooctane sulfonateprogramsresponseskill acquisitionsporadic Parkinson&aposs Diseasesubstance usetherapy designtoxicanttoxicant interactiontranslational impactuptake
项目摘要
Project Summary:
This NIH K99/R00 proposal seeks support for the development of an independent research program aimed at
addressing the questions pertaining to perfluorooctane sulfonic acid (PFOS) as a potential risk factor
dopaminergic cell loss. Polyfluoroalkyl substances (PFAS) have important usage in firefighting equipment,
nonstick cookware, carpets, etc. due to their unique capabilities to repel oil and water. These chemicals pose an
immediate environmental health threat due to their protracted half-life and ability to resist environmental
degradation, owing to its strong carbon-fluorine bond. The extensive presence and huge gaps in knowledge
pertaining to neurotoxic effects and underlying mechanisms alongside a larger percentage of sporadic cases in
major neurodegenerative disorders compel the dire need to investigate such compounds. Our preliminary
studies on PFOS in C. elegans have shown DA neurotoxicity, reduction in mitochondrial content, and increased
reactive oxygen species (Sammi et al., 2019). These effects are characteristic manifestations in Parkinson’s disease
(PD), with cause largely unknown in 90% of sporadic PD cases. In light of the preliminary data in Caenorhabditis
elegans, showing DA cell loss in response to PFOS, I will develop expertise in Induced pluripotent stem cells. A
multi-pronged approach comprising of in vivo and in vitro models will be conducted to further identify
neurotoxic and neurodevelopmental defects with a larger focus to elucidate how mitochondria and GSH extend
their role in neuropathology. Conventionally, toxicity evaluation relies heavily on end-point based studies, while
mechanistic aspects remain largely understudied. Deleterious effects of the chemicals appear over the span of
time in the form of pathologies, which is a collective result of mechanistic alterations or aberrations. Therefore,
identification of the series of biochemical events culminating in neurotoxicity is vital to define the Adverse
outcome pathway (AOP). The identified mechanisms warrant the ability to design interventions, mechanistic
assessment of similar compounds and synthesis of safer compounds. My approach consists of in vitro and in vivo
systems to elucidate the neurotoxic effects of PFOS. Information pertaining to AOPs will serve as mechanistic
endpoints/markers for comparative evaluation amongst a similar class of compounds (PFAS), facilitating
derivation of the structure-activity relationship. In summary, I will draw an in vivo, in vitro signature of PFOS
mediated Dopamine toxicity. Additionally, a detailed career development program entailing coursework,
learning new techniques/model systems, representation and attendance at scientific meetings and feedback from
the advisory committee has been constructed to help the candidate. My plan includes mentored training in
critical new techniques/model systems, combined with my existing expertise that will enable the development
of a scientific focus distinct from the mentor’s lab and promoting an independent research career.
项目概要:
NIH K99/R00 提案寻求支持开发一项独立研究计划,旨在
解决与全氟辛烷磺酸 (PFOS) 作为潜在风险因素的问题
多巴胺能细胞损失。多氟烷基物质(PFAS)在消防设备、
不粘炊具、地毯等,因其独特的拒油拒水能力。这些化学物质构成
由于其半衰期长和抵抗环境影响的能力,直接威胁环境健康
由于其强大的碳氟键而降解。广泛的存在和巨大的知识差距
与神经毒性作用和潜在机制以及较大比例的散发病例有关
主要的神经退行性疾病迫切需要研究此类化合物。我们的初步
对秀丽隐杆线虫中 PFOS 的研究表明,DA 具有神经毒性、线粒体含量减少和线粒体含量增加。
活性氧(Sammi 等人,2019)。这些影响是帕金森病的特征表现
(PD),90% 的散发性 PD 病例的病因很大程度上未知。根据秀丽隐杆线虫的初步数据
线虫,显示 DA 细胞因全氟辛烷磺酸而损失,我将发展诱导多能干细胞方面的专业知识。一个
将采取包括体内和体外模型在内的多管齐下的方法来进一步确定
神经毒性和神经发育缺陷,重点阐明线粒体和 GSH 如何延伸
他们在神经病理学中的作用。传统上,毒性评估很大程度上依赖于基于终点的研究,而
机械方面仍然很大程度上未被充分研究。化学物质的有害影响会在一段时间内出现
时间以病理形式出现,这是机械改变或畸变的集体结果。所以,
识别最终导致神经毒性的一系列生化事件对于定义不良反应至关重要
结果途径(AOP)。已确定的机制保证了设计干预措施、机制的能力
评估类似化合物并合成更安全的化合物。我的方法包括体外和体内
系统来阐明 PFOS 的神经毒性作用。与 AOP 相关的信息将作为机制
用于同类化合物 (PFAS) 之间比较评估的终点/标记,促进
结构-活性关系的推导。总之,我将画出 PFOS 的体内、体外特征
介导的多巴胺毒性。此外,详细的职业发展计划需要课程作业,
学习新技术/模型系统、代表和出席科学会议以及来自
设立咨询委员会是为了帮助候选人。我的计划包括指导培训
关键的新技术/模型系统,结合我现有的专业知识,将有助于开发
与导师实验室不同的科学焦点,并促进独立的研究生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shreesh Raj Sammi其他文献
Shreesh Raj Sammi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shreesh Raj Sammi', 18)}}的其他基金
Elucidation of mitochondrial mechanisms critical to mediating PFAS neurotoxicity
阐明对介导 PFAS 神经毒性至关重要的线粒体机制
- 批准号:
10301852 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Toward a Political Theory of Bioethics: Participation, Representation, and Deliberation on Federal Bioethics Advisory Committees
迈向生命伦理学的政治理论:联邦生命伦理学咨询委员会的参与、代表和审议
- 批准号:
0451289 - 财政年份:2005
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant














{{item.name}}会员




