A supplement to: NIGMS 1R15GM144907-01A1 - Polymer-Lipid Particles investigated by Magnetic Resonance Spectroscopy

补充:NIGMS 1R15GM144907-01A1 - 通过磁共振波谱研究聚合物脂质颗粒

基本信息

  • 批准号:
    10801755
  • 负责人:
  • 金额:
    $ 9.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-21 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

A supplement to: NIGMS 1R15GM144907-01A1 - Polymer-Lipid Particles investigated by Magnetic Resonance Spectroscopy In response to: PA-20-272 - Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional) Funds are requested from NIGMS to obtain state of the art gel permeation chromatography (GPC) multi-angle light scattering (MALS) equipment to facilitate polymer analysis. Development of novel polymers is integral to NIGMS 1R15GM144907- 01A1, therefore having reliable methods for characterizing the polymers is essential to the project. Funds are being requested to obtain a TOSOH EcoSEC Elite including Refractive Index and LenS3 Multi-Angle Light Scattering Detector GPC MALS system capable of efficient and accurate polymer analysis to replace equipment that is from 2014. Project Summary/Abstract: Membrane proteins represent approximately 30% of all known proteins but only approximately 1% of solved protein structures. Despite recent advances in methods for membrane protein structural biology, knowledge about this important class of proteins lags behind their soluble counterparts. Membrane proteins are critical to numerous aspects of health, ranging from regulation cellular function and transport into and out of the cell, through to viral infections which use membrane proteins as part of the infection cycle. In almost 90% of newly developed and approved therapeutics, protein structural information was used to guide the development of the therapeutic molecules. Due to the limited and incomplete structural information on membrane proteins, the development of therapeutics and treatments that target membrane bound proteins is limited. A challenge in elucidating membrane protein structures is the lack of robust and appropriate lipid membrane mimetics. Existing membrane mimetics have limitations that can hinder membrane protein structural determination. This highlights an urgent need to develop lipid membrane mimetics which both provide a good approximation to the native lipid bilayer in terms of both structure and curvature, while also facilitating structural analysis of the membrane protein embedded in the mimetic. Yet polymer structure-function relationships are not well established for polymers that interact with lipids and membrane proteins. This project will use modern controlled polymer chemistry tools, to create a new class of polymers that will self-assemble with lipids. These self-assembled polymer-lipid systems will form well defined discs on the order of 10s of nanometers, giving lipid membrane mimetics suitable for the analysis of many membrane proteins. The advanced polymer chemistry techniques will enable fine tuning of polymer’s length, charges, and hydrophobicity. Polymer analysis through GPC MALS will give detailed information on the polymer’s properties, facilitation structure -function relationships between polymers and their self-assembled structures. Polymers will also be modified with spin-labels for electron paramagnetic resonance spectroscopy. Electron paramagnetic resonance spectroscopy methods will be used on polymers, lipids and membrane proteins modified with appropriate spin labels, providing insights into the local dynamics and proximities of the self-assembled polymer-lipid and polymer-lipid-membrane protein complexes. These insights can be used to guide the design of polymers for robust lipid membrane mimetics. Training and mentoring of undergraduate students as well as a graduate assistant will be a core feature of the proposed project. Undergraduate students will be integrated fully into the projects, including the polymer analysis, along with the graduate student, gaining skills in this field at the interface of materials science and biophysics.
补充:NIGMS 1R15GM144907-01A1 - 聚合物脂质颗粒 通过磁共振波谱研究 回应:PA-20-272 - 对现有 NIH 拨款的行政补充和 合作协议(家长管理支持临床试验可选) 向 NIGMS 申请资金以获得最先进的凝胶渗透 色谱(GPC)多角度光散射(MALS)设备方便 聚合物分析。新型聚合物的开发是 NIGMS 1R15GM144907 的组成部分- 01A1,因此拥有可靠的方法来表征聚合物对于 该项目。正在申请资金以获得 TOSOH EcoSEC Elite,包括 折射率和 LenS3 多角度光散射检测器 GPC MALS 系统 能够进行高效、准确的聚合物分析,以取代 2014 年的设备。 项目摘要/摘要:膜蛋白约占所有蛋白的 30% 已知的蛋白质,但仅占已解决蛋白质结构的大约 1%。尽管最近 膜蛋白结构生物学方法的进展,相关知识 重要的一类蛋白质落后于可溶性蛋白质。膜蛋白是 对健康的许多方面都至关重要,包括调节细胞功能和 转运进出细胞,直至使用膜蛋白的病毒感染 作为感染周期的一部分。在近90%的新开发和批准的 治疗学中,蛋白质结构信息被用来指导开发 治疗分子。由于结构信息有限且不完整 膜蛋白,靶向疗法和治疗方法的开发 膜结合蛋白是有限的。阐明膜蛋白的挑战 结构的原因是缺乏稳健且适当的脂质膜模拟物。现存的 膜模拟物的局限性可能会阻碍膜蛋白的结构 决心。这凸显了开发脂质膜模拟物的迫切需要 两者在结构方面都提供了与天然脂质双层的良好近似 和曲率,同时也有利于膜蛋白的结构分析 嵌入模仿体中。然而聚合物结构与功能的关系并不好 为与脂质和膜蛋白相互作用的聚合物而建立。 该项目将使用现代受控高分子化学工具,创造一个新的类别 将与脂质自组装的聚合物。这些自组装的聚合物脂质 系统将形成数十纳米数量级的明确定义的圆盘,从而提供脂质 膜模拟物适用于分析许多膜蛋白。先进的 聚合物化学技术将能够微调聚合物的长度、电荷和 疏水性。通过 GPC MALS 进行聚合物分析将提供有关 聚合物的性质、聚合物之间的易化结构-功能关系 他们的自组装结构。聚合物也将通过自旋标签进行修饰 电子顺磁共振波谱。电子顺磁共振 光谱方法将用于修饰聚合物、脂质和膜蛋白 具有适当的自旋标签,提供对本地动态和邻近性的见解 自组装的聚合物-脂质和聚合物-脂质-膜蛋白复合物。这些 见解可用于指导稳健的脂质膜模拟物的聚合物设计。 对本科生和研究生助理的培训和指导将 是拟议项目的核心特征。本科生将完全融入 与研究生一起参与包括聚合物分析在内的项目,获得 材料科学和生物物理学交叉领域的技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dominik Konkolewicz其他文献

Dominik Konkolewicz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dominik Konkolewicz', 18)}}的其他基金

Polymer-Lipid Particles investigated by Magnetic Resonance Spectroscopy
通过磁共振波谱研究聚合物脂质颗粒
  • 批准号:
    10579675
  • 财政年份:
    2022
  • 资助金额:
    $ 9.96万
  • 项目类别:

相似海外基金

How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
  • 批准号:
    DP240103141
  • 财政年份:
    2024
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Discovery Projects
Structural classification of NHEJ pathways; unravelling the role of Ku-binding proteins
NHEJ通路的结构分类;
  • 批准号:
    MR/X00029X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Research Grant
BRC-BIO: Evolutionary Patterns of Ice-Binding Proteins in North Pacific Intertidal Invertebrates
BRC-BIO:北太平洋潮间带无脊椎动物冰结合蛋白的进化模式
  • 批准号:
    2312378
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Exploring the roles and functions of sex steroid hormone receptor-associated RNA binding proteins in the development of geriatric diseases.
探索性类固醇激素受体相关 RNA 结合蛋白在老年疾病发展中的作用和功能。
  • 批准号:
    23K06408
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
UV Plasmon-Enhanced Chiroptical Spectroscopy of Membrane-Binding Proteins
膜结合蛋白的紫外等离子增强手性光谱
  • 批准号:
    10680969
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
Investigating physiologic and pathophysiologic connections between the Parkinson's disease protein alpha-synuclein and RNA binding proteins
研究帕金森病蛋白 α-突触核蛋白和 RNA 结合蛋白之间的生理和病理生理联系
  • 批准号:
    10744556
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
Structural and computational analysis of immune-related RNA-binding proteins
免疫相关 RNA 结合蛋白的结构和计算分析
  • 批准号:
    23K06597
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of carbohydrate-binding proteins and their applications
碳水化合物结合蛋白的表征及其应用
  • 批准号:
    23K05034
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A machine learning approach to identify carbon dioxide-binding proteins for sustainability and health
一种机器学习方法来识别二氧化碳结合蛋白以实现可持续发展和健康
  • 批准号:
    2838427
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Studentship
The role of RNA binding proteins in heart development and congenital heart defects
RNA结合蛋白在心脏发育和先天性心脏缺陷中的作用
  • 批准号:
    10827567
  • 财政年份:
    2023
  • 资助金额:
    $ 9.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了