Fibrin-Based Nanoparticles as a Novel Sealant for Vascular Anastomosis
基于纤维蛋白的纳米颗粒作为血管吻合的新型密封剂
基本信息
- 批准号:10806127
- 负责人:
- 金额:$ 3.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesivesAir EmbolismAnastomosis - actionAngiographyBenchmarkingBiocompatible MaterialsBiologicalBiological AssayBlood VesselsCardiovascular DiseasesCardiovascular Surgical ProceduresCarotid ArteriesCellsCellular InfiltrationCharacteristicsClinical SkillsCoagulation ProcessCold ChainsColloidsConsumptionCoronary Artery BypassCryopreservationDrug Delivery SystemsDrug vehicleEndotheliumEvaluationExhibitsFGF2 geneFibrinFibrin Tissue AdhesiveFibrinogenFibroblast Growth FactorFibroblastsFormulationFreeze DryingGelGluesGrowth FactorHemorrhageHemostatic functionHistologicHyperplasiaIn VitroInfiltrationLeadLeftLifeLigationLinkMarketingMechanicsMedicalMicrofluidicsMicroscopyModalityModelingMorphologyNatural DisastersOperative Surgical ProceduresOrgan TransplantationOrgan failureOryctolagus cuniculusOutcomePatientsPharmaceutical PreparationsPhasePhysiciansPhysiologicalPlayPolymersPorosityPostoperative PeriodProceduresProcessPropertyPublic HealthRecoveryResearchResearch TechnicsRiskRoleSafetyScientistShapesSiteSkin wound healingStenosisStimulantStructureSurgical suturesTechniquesTechnologyTemperatureTestingThrombinThrombosisTimeTissue SampleTrainingTransplantationTraumaWarWorkcareercofactordensitydesignflexibilityglobal healthhealinghealth applicationhistological specimensimprovedin vivoinnovationmechanical propertiesnanoparticlenovelnovel therapeuticsparticlepolymerizationpractical applicationpressurerelease factorrepairedrestenosissealantsuccesssurgery outcomewound closurewound healing
项目摘要
PROJECT SUMMARY
Vascular anastomosis is an important surgical technique whereby closely spaced stitches are used to connect blood vessels.
This process is used frequently in organ transplantation, trauma repairs, and cardiovascular surgery. However, vascular
anastomosis is time consuming and associated with serious complications and long recovery times. Use of fibrin glue in
anastomosis has led to improved surgical outcomes and shorter operating times, but these glues are frequently impractical
as their concentrated formulations create high-density gels with short working times, low cellular infiltration, and cold
storage limitations. We have developed fibrin-based nanoparticles (FBNs) which we have used to deliver growth factors
and promote healing in vivo. Unlike traditional fibrin glues, FBNs are pre-polymerized and use physiologically relevant
fibrin/thrombin concentrations. Owing to their colloidal structure and the aforementioned properties, FBNs exhibit tunable
gelation, increased cellular infiltration, room temperature storage, and enhanced drug delivery capabilities – including of
fibroblast growth factor 2 (FGF2), a known stimulant of vascular repair. The objective of this proposal is the optimization,
characterization and in vivo analysis of paintable and patch formulations of an FBN surgical sealant with tunable growth
factor release. It is expected that these FBN sealants will demonstrate better functionality than current fibrin glues, with
the benefit of longer work time, extended stability at room temperature, targeted growth factor delivery, and improved
healing outcomes. Aim 1 will optimize the formulation of patch and flowable FBN glues. This will occur through
characterization of the effects of changes in FBN concentration, thrombin concentration, and cofactor used, on the
mechanics and functionality of the glues. Testing will probe polymerization and degradation dynamics, structure,
mechanical properties, sealant ability, and safety profile. Modalities used will include rheometry, microscopy, mechanical
testing, and novel ex vivo and microfluidic assays. Aim 2 will optimize the loading/release of FGF2 by FBNs and
characterize the effects of FGF2-FBN sealants on vascular wound healing in vitro. FGF2 loading efficiency and release
characteristics of FBN sealants will be determined and compared to high-density bulk fibrin glues. Endothelial and fibroblast
scratch tests and wound closure assays will be used to assess healing outcomes in vitro. Aim 3 will compare FBN
formulations (gel and patch; unloaded and loaded with FGF2) to current fibrin glues using an in vivo leporine model of
carotid artery anastomosis. Angiography will be use to characterize vascular morphology and histology of sampled tissues
will be used to evaluate signs of healing, restenosis, and hyperplasia. This proposal’s use of FBNs will lead to a novel
surgical sealant with improved work time and tunable drug delivery profiles that boasts superior wound healing – allowing
for faster operating times, fewer complications, and improved recovery. This technology will also increase the accessibility
of surgical glues by removing cold-chain requirements, opening up their use in varied global health applications. Training
in the associated research techniques and clinical skills required for this project will contribute to the success of the applicant
during the next phases of her career on the path to becoming an independent physician scientist.
项目摘要
血管吻合是一种重要的外科手术技术,其缝隙紧密间隔用于连接血管。
此过程经常用于器官移植,创伤维修和心血管手术。但是,血管
吻合很耗时,并且与严重的并发症和较长的恢复时间有关。使用纤维蛋白胶
吻合术导致手术结果改善,工作时间较短,但是这些胶水经常不切实际
由于其浓缩配方会产生高密度凝胶,工作时间短,细胞浸润低和冷
存储限制。我们开发了基于纤维蛋白的纳米颗粒(FBN),我们用来提供生长因子
并在体内促进康复。与传统的纤维蛋白胶不同,FBN是预聚合并使用物理相关的
纤维蛋白/凝血酶浓度。由于其胶体结构和相关事项,FBN暴露了可调
凝胶化,细胞浸润增加,室温存储和增强的药物输送能力,包括
成纤维细胞生长因子2(FGF2),一种已知的血管修复刺激剂。该建议的目的是优化,
FBN手术密封剂的可涂有和斑块配方的表征和体内分析,可调节生长
因子释放。预计这些FBN密封剂将比电流纤维蛋白胶水表现出更好的功能,并具有
更长的工作时间的好处,在室温下延长稳定性,有针对性的生长因子交付并改善
治愈结果。 AIM 1将优化斑块和可流动FBN胶的配方。这将通过
表征FBN浓度,凝血酶浓度和辅助因子变化的影响,对
胶水的力学和功能。测试将探测聚合和降解动态,结构,
机械性能,密封剂能力和安全性。所使用的方式将包括风化,显微镜,机械
测试以及新型的离体和微流体测定。 AIM 2将优化FBN的加载/释放FGF2,
表征FGF2-FBN密封剂对体外血管伤口愈合的影响。 FGF2加载效率和释放
将确定FBN密封剂的特性并将其与高密度的纤维蛋白胶水进行比较。内皮和成纤维细胞
刮擦测试和伤口闭合测定将用于评估体外的愈合结果。 AIM 3将比较FBN
公式(凝胶和斑块;卸载并用FGF2卸载)使用的当前纤维蛋白胶,并使用体内麻风病模型的模型
颈动脉吻合。血管造影将用于表征采样组织的血管形态和组织学
将用于评估愈合,再狭窄和增生的迹象。该提议的使用FBN将导致一本小说
手术密封剂,有改善的工作时间和可调的药物输送轮廓,可增强伤口愈合 - 允许
对于更快的运营时间,较少的并发症和改善的恢复。该技术还将增加可访问性
通过删除冷链要求,开放其在各种全球健康应用中的用途,可以通过手术进行。训练
在相关的研究技术和该项目所需的临床技能中,将有助于申请人的成功
在她职业生涯的下一个阶段中,成为一名独立物理科学家的道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nina Alexandra Moiseiwitsch其他文献
Nina Alexandra Moiseiwitsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nina Alexandra Moiseiwitsch', 18)}}的其他基金
Fibrin-Based Nanoparticles as a Novel Sealant for Vascular Anastomosis
基于纤维蛋白的纳米颗粒作为血管吻合的新型密封剂
- 批准号:
10536988 - 财政年份:2022
- 资助金额:
$ 3.99万 - 项目类别:
相似国自然基金
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多尺度低表面能粘合剂的构筑及织物基传感器稳定性提升机制研究
- 批准号:22302110
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 3.99万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 3.99万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 3.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
- 批准号:
10555093 - 财政年份:2023
- 资助金额:
$ 3.99万 - 项目类别:
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 3.99万 - 项目类别:
Fellowship