Molecular mechanisms of Tandem Pore potassium channel gating and regulation

串联孔钾通道门控和调节的分子机制

基本信息

项目摘要

Abstract The goals of this project are to determine the molecular mechanisms that control activity of the tandem pore (K2P) family of potassium channels, with a focus on how K2Ps integrate a diverse set of incoming signals to regulate channel function. K2Ps are ion channels primarily responsible for producing background “leak” currents that set cellular resting membrane potential. Modulation of K2P activity directly affects cellular excitability and K2P channels have been implicated to play important roles in cardiac, neuronal, endocrine, and vascular biology. The mechanosensitive subfamily of K2Ps that are the focus of this proposal have been identified as potential drug development targets for treatment of cardiac arrhythmia, depression, and chronic pain, though efforts to develop small molecule modulators that target K2Ps have largely failed to produce high affinity and subtype selective agents. Meanwhile, endogenous lipids are known to modulate many K2P channels and show strong subtype specificity. The overall aim of this proposal is to examine the basic biology underlying K2P modulation by lipids and the related effects of membrane tension, with the long-term goal of using this knowledge to develop a framework for development of improved pharmacology against K2P channels. To achieve these goals, we will pursue a multifaceted approach that includes cryoEM structural studies, native mass spectrometry to define K2P/lipid interactions, and electrophysiological functional studies of K2P behavior. Our first aim will examine the mechanisms by which positive and negative allosteric membrane phosopholipids or free fatty acids are sensed by K2P channels, with a focus on the molecular details of lipid binding sites in the K2P structure. We will also address the basis for the interrelated impacts of allosteric lipids and membrane tension on K2P gating behavior. In aim2, we will explore the mechanism by which lipids, mechanosensitivity, and other K2P input signals control channel output at the ion conducting potassium selectivity filter, defining the molecular connectivity within the structural architecture of the K2P channel. Taken together, our studies will provide a detailed structural model of K2P gating and modulation that is broadly relevant to the basic biology of this important family of channels.
摘要 本项目的目标是确定控制串联孔活性的分子机制 (K2P)钾通道家族,重点是K2 Ps如何整合各种传入信号, 调节通道功能。K2 P是主要负责产生背景“泄漏”电流的离子通道 设定细胞静息膜电位。K2 P活性的调节直接影响细胞兴奋性, K2 P通道在心脏、神经元、内分泌和血管生物学中发挥重要作用。 K2 Ps的机械敏感性亚家族是该建议的焦点,已被确定为潜在的 药物开发的目标是治疗心律失常,抑郁症和慢性疼痛,虽然努力, 开发靶向K2 Ps的小分子调节剂在很大程度上未能产生高亲和力和亚型 选择剂。同时,已知内源性脂质调节许多K2 P通道,并表现出强的 亚型特异性本提案的总体目标是研究K2 P调节的基础生物学 脂质和膜张力的相关影响,长期目标是利用这些知识来开发 开发针对K2 P通道的改进药理学的框架。为了实现这些目标,我们将 追求多方面的方法,包括cryoEM结构研究,本地质谱,以确定 K2 P/脂质相互作用和K2 P行为的电生理功能研究。我们的第一个目标是检查 正和负变构膜磷脂或游离脂肪酸被感知的机制 通过K2 P通道,重点是K2 P结构中脂质结合位点的分子细节。我们还将 解决变构脂质和膜张力对K2 P门控行为的相互影响的基础。 在aim 2中,我们将探索脂质、机械敏感性和其他K2 P输入信号控制的机制。 在离子传导钾选择性过滤器处的通道输出,限定了通道内的分子连接性。 K2 P通道的结构。综上所述,我们的研究将提供一个详细的结构模型 K2 P门控和调制的研究与这个重要的通道家族的基础生物学广泛相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Michael Riegelhaupt其他文献

Paul Michael Riegelhaupt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Michael Riegelhaupt', 18)}}的其他基金

Molecular mechanisms of Tandem Pore potassium channel gating and regulation
串联孔钾通道门控和调节的分子机制
  • 批准号:
    10631140
  • 财政年份:
    2022
  • 资助金额:
    $ 15.17万
  • 项目类别:
Mechanisms of Volatile Anesthetic Modulation of Tandem Pore Potassium Channels
串联孔钾通道的挥发性麻醉药调节机制
  • 批准号:
    10404057
  • 财政年份:
    2019
  • 资助金额:
    $ 15.17万
  • 项目类别:
Mechanisms of Volatile Anesthetic Modulation of Tandem Pore Potassium Channels
串联孔钾通道的挥发性麻醉药调节机制
  • 批准号:
    10625463
  • 财政年份:
    2019
  • 资助金额:
    $ 15.17万
  • 项目类别:
Mechanisms of Volatile Anesthetic Modulation of Tandem Pore Potassium Channels
串联孔钾通道的挥发性麻醉药调节机制
  • 批准号:
    10166881
  • 财政年份:
    2019
  • 资助金额:
    $ 15.17万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了