Calcium modification of voltage gated sodium channels
电压门控钠通道的钙修饰
基本信息
- 批准号:10798965
- 负责人:
- 金额:$ 21.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAddressAffinityBindingBinding ProteinsBinding SitesCalciumCalmodulinCellsCentral Nervous SystemComplexConflict (Psychology)CustomDataData AnalysesDiseaseElectrophysiology (science)GenesGoalsImpairmentIndividualInvestigationIon ChannelIon Channel GatingKineticsKnowledgeLifeLiteratureMeasuresModelingModificationMolecular ConformationMutationMyocardiumPaperPhysiologicalPoint MutationProcessProtein IsoformsProteinsRecoveryRegulationReportingResearch PersonnelRoleSkeletal MuscleSmooth MuscleSodiumSodium ChannelStructureTestingTimeWorkdesignnovelnovel strategiesoutcome disparitiessmall moleculestructural biologytreatment strategyvoltage
项目摘要
PROJECT SUMMARY
Voltage-gated ion channels are essential for action potentials in excitable cells located throughout the body
(central nervous system, smooth muscle, heart and skeletal muscle). Loss of, improper, or untimely function,
can each cause or contribute to disease. Many individual point mutations in the genes of ion channel or
accessory proteins have been associated with disease, some of which can be life threatening. Many disease-
associated mutations are at or near accessory protein binding sites. Therefore, significant effort has been put
forth by many investigators to characterize mechanisms of ion channel gating modification.
It is well established that Ca2+ can alter ion channel function, and the Ca2+ sensing protein calmodulin
(CaM) has a prominent role in these processes. Structural investigations have identified many distinct CaM-ion
channel interactions; however, the posited physiological function and interpretation of this data is often
controversial. Early studies relied on measuring ion channel function in the absence or presence of Ca2+ and
this has generated seemingly disparate results. Subsequent investigation revealed the mechanism(s) of Ca2+-
driven modification are complex and can involve multiple accessory proteins.
I previously identified a high-affinity interaction between CaM and part of a voltage-gated sodium
channel that is directly responsible for inactivating conduction. I leveraged my in-depth structural
characterization to impair the CaM interaction without conferring additional modification to channel function.
This is a notable accomplishment given this part of the channel undergoes rapid conformational change during
each functional cycle. Because of this, I could for the first time clearly attribute modified sodium channel
function to reduced CaM binding. My data demonstrate that sodium channels with this reduced CaM
interaction require longer to recover from the inactivated state.
Considering my structure/function findings with literature suggests a paradigm of CaM Facilitated
Recovery from Inactivation (CFRI). As demonstrated in my papers and scientific data, CaM engages the
inactivation gate of several sodium channel isoforms with high affinity, suggesting a unique model of
regulation. My findings are in direct conflict with other reports that posit models of CaM Dependent Inactivation
(CDI) and [Ca2+] insensitivity. These opposing models arise from knowledge gaps regarding (i) the kinetic rates
of CaM interactions and (ii) the precise role of each CaM interaction in an excitable cell that contains oscillating
[Ca2+]. My proposal addresses these knowledge gaps by uniquely combining structural biology, stopped-flow
kinetics, and electrophysiology to dissect the roles of the CaM-ion channel interactions in excitable cells.
Importantly, we then leverage this knowledge to design custom small molecules (SAR by NMR approach) that
alter the kinetics of accessory protein interactions, with a goal of tuning channel gating. This work will test
models of Ca2+ modification of ion channel function, and explore novel strategies for treating channelopathies.
项目概要
电压门控离子通道对于全身可兴奋细胞的动作电位至关重要
(中枢神经系统、平滑肌、心脏和骨骼肌)。功能丧失、不适当或不合时宜,
每种都可以导致或促成疾病。离子通道基因中的许多个体点突变或
辅助蛋白与疾病有关,其中一些可能危及生命。许多疾病——
相关突变位于辅助蛋白结合位点处或附近。因此,已经付出了巨大的努力
许多研究人员提出来表征离子通道门控修饰的机制。
众所周知,Ca2+ 可以改变离子通道功能,而 Ca2+ 传感蛋白钙调蛋白
(CaM) 在这些过程中发挥着重要作用。结构研究已鉴定出许多不同的 CaM 离子
渠道互动;然而,假定的生理功能和对这些数据的解释通常是
有争议的。早期研究依赖于在存在或不存在 Ca2+ 的情况下测量离子通道功能,
这产生了看似不同的结果。随后的研究揭示了 Ca2+- 的机制
驱动修饰很复杂,可能涉及多种辅助蛋白。
我之前发现 CaM 和电压门控钠的一部分之间存在高亲和力相互作用
直接负责传导失活的通道。我利用我的深入结构
表征以损害 CaM 相互作用,而不会对通道功能进行额外的修改。
这是一项值得注意的成就,因为通道的这一部分在
每个功能周期。正因为如此,我第一次可以清楚地归因于修饰的钠通道
功能以减少 CaM 结合。我的数据表明,具有这种减少的 CaM 的钠通道
相互作用需要更长的时间才能从失活状态恢复。
考虑到我的结构/功能发现与文献提出了 CaM 促进的范例
失活恢复 (CFRI)。正如我的论文和科学数据所证明的那样,CaM 致力于
几种具有高亲和力的钠通道亚型的失活门,表明了一种独特的模型
规定。我的发现与其他提出 CaM 依赖性失活模型的报告直接冲突
(CDI) 和 [Ca2+] 不敏感。这些相反的模型源于关于(i)动力学速率的知识差距
CaM 相互作用以及 (ii) 每个 CaM 相互作用在包含振荡的可兴奋细胞中的精确作用
[Ca2+]。我的提案通过独特地结合结构生物学、停流技术来解决这些知识差距
动力学和电生理学来剖析 CaM-离子通道相互作用在可兴奋细胞中的作用。
重要的是,我们然后利用这些知识来设计定制小分子(通过 NMR 方法进行 SAR)
改变辅助蛋白相互作用的动力学,以调整通道门控为目标。这项工作将测试
Ca2+ 离子通道功能修饰模型,并探索治疗离子通道病的新策略。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Review of Calcineurin Biophysics with Implications for Cardiac Physiology.
- DOI:10.3390/ijms222111565
- 发表时间:2021-10-26
- 期刊:
- 影响因子:5.6
- 作者:Williams RB;Johnson CN
- 通讯作者:Johnson CN
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher N. Johnson其他文献
Australia's Mammal Extinctions: A 50,000-Year History
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Christopher N. Johnson - 通讯作者:
Christopher N. Johnson
A novel and highly regioselective Cr-mediated route to functionalised quinone boronic ester derivatives
一种新颖且高度区域选择性的 Cr 介导的功能化醌硼酸酯衍生物路线
- DOI:
10.1039/a906643h - 发表时间:
1999 - 期刊:
- 影响因子:4.9
- 作者:
M. W. Davies;J. Harrity;Christopher N. Johnson - 通讯作者:
Christopher N. Johnson
Factors affecting success of conservation translocations of terrestrial vertebrates: A global systematic review
影响陆生脊椎动物保护易位成功的因素:全球系统评价
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:4
- 作者:
S. D. Morris;B. Brook;K. Moseby;Christopher N. Johnson - 通讯作者:
Christopher N. Johnson
Studies on a series of potent, orally bioavailable, 5-HT(1) receptor ligands.
对一系列有效的、口服生物可利用的 5-HT(1) 受体配体的研究。
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:2.7
- 作者:
S. Ward;Christopher N. Johnson;P. Lovell;C. Scott;Paul W Smith;G. Stemp;K. Thewlis;A. Vong;J. Watson - 通讯作者:
J. Watson
Effectiveness of thermal cameras compared to spotlights for counts of arid zone mammals across a range of ambient temperatures
热像仪与聚光灯在不同环境温度范围内对干旱地区哺乳动物进行计数的有效性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Hugh W. McGregor;K. Moseby;Christopher N. Johnson;S. Legge - 通讯作者:
S. Legge
Christopher N. Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher N. Johnson', 18)}}的其他基金
Calcium modification of voltage gated sodium channels
电压门控钠通道的钙修饰
- 批准号:
10275837 - 财政年份:2021
- 资助金额:
$ 21.6万 - 项目类别:
Calcium modification of voltage gated sodium channels
电压门控钠通道的钙修饰
- 批准号:
10447183 - 财政年份:2021
- 资助金额:
$ 21.6万 - 项目类别:
Calcium modification of voltage gated sodium channels
电压门控钠通道的钙修饰
- 批准号:
10620784 - 财政年份:2021
- 资助金额:
$ 21.6万 - 项目类别:
Structural / functional basis of CaM dependent modulation of NaV1.5 inactivation
NaV1.5 失活的 CaM 依赖性调节的结构/功能基础
- 批准号:
8456784 - 财政年份:2014
- 资助金额:
$ 21.6万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 21.6万 - 项目类别:
Research Grant














{{item.name}}会员




