Administrative Supplement: Glycosylation as a Structural Determinant in Peptide Fibrillization
行政补充:糖基化作为肽纤维化的结构决定因素
基本信息
- 批准号:10802588
- 负责人:
- 金额:$ 9.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Administrative SupplementArchitectureBindingBiocompatible MaterialsBiologicalBiological ModelsBiophysicsCarbohydrate ChemistryCarbohydratesCartilageCell surfaceDataDegenerative polyarthritisDiseaseEquilibriumFutureGlycoproteinsHealthHumanJointsKineticsKnowledgeLibrariesLubricationMediatingMethodsModificationMolecularMorphologyMucinsNaturePeptidesProductionPropertyProtein GlycosylationProteinsResearchRoleSortingSurfaceTestinganalogbeta pleated sheetbiophysical techniquescarbohydrate analogcarbohydrate binding proteincarbohydrate receptorcost effectivedesignglycosylationinsightlubricinnanofiberpreventprogramsprotein foldingself assemblystructural determinantssuccess
项目摘要
Project Summary. All human cell surfaces and nearly half of all human proteins are decorated with
carbohydrates (i.e., glycosylated), yet our understanding of the role of glycosylation in health and disease
remains limited. Increasing evidence is establishing a central role for glycosylation as a determinant of protein
folding, sorting, processing, export, and function. Advancing this understanding requires platforms to
systematically study changes in protein form and function resulting from altered glycosylation, which has
historically required highly specialized expertise in protein production and carbohydrate synthesis. As a practical
alternative, my research program develops carbohydrate-modified peptides that self-assemble into fibrillar
architectures as synthetic analogs of glycosylated proteins. The proposed research program will study how
glycosylation influences peptide fibrillization as a surrogate for protein folding, and will use these insights to
enable design of new biomaterials. Preliminary data supporting the proposed research demonstrate that
glycosylation can facilitate hierarchical self-assembly of a synthetic b-sheet fibrillizing peptide into anisotropic
networks of aligned nanofibers. These anisotropic networks resist non-specific biological interactions yet
selectively recognize carbohydrate-binding proteins due to the emergent function of carbohydrates assembled
into a multivalent architecture. The overarching hypothesis of the proposed research is that glycosylation
influences peptide fibrillization and nanofiber function by establishing intermolecular forces that mediate specific
binding interactions while preventing non-specific associations. To test this, we will first develop a method for
scalable, cost-effective synthesis of a library of fibrillizing peptides modified with a broad range of carbohydrate
chemistries. Then we will use this library to study the influence of glycosylation on the kinetics of peptide
fibrillization and equilibrium morphology of the resultant nanofibers using various biophysical methods. Together,
these studies will establish fundamental understanding of glycosylation as a structural determinant in peptide
fibrillization. Finally, we will evaluate glycosylated peptide nanofibers as biomaterials that recapitulate the form
and function of lubricin, a cartilage glycoprotein that provides boundary lubrication at the joint surface, which is
lost during osteoarthritis progression. Although we use synthetic fibrillizing peptides as a model system, general
observations made through this research program are expected to be applicable to the biophysics of natural
fibrillizing peptides, and may also inform understanding of mucins and other densely glycosylated proteins.
Success of this research will advance the field of supramolecular biomaterials by establishing carbohydrates as
a new class of molecular motif for controlling peptide fibrillization. Ultimately, this research will support future
efforts to develop biomaterials with new structural and functional properties that are desirable for biomedical
applications by creating peptides modified with diverse carbohydrate chemistries found throughout nature.
项目摘要。所有的人类细胞表面和近一半的人类蛋白质都是由
碳水化合物(即,糖基化),但我们对糖基化在健康和疾病中的作用的理解
仍然有限。越来越多的证据表明,糖基化作为蛋白质的决定因素,
折叠、分拣、加工、出口等功能。推进这一理解需要平台
系统地研究糖基化改变引起的蛋白质形式和功能的变化,
历史上需要高度专业化的蛋白质生产和碳水化合物合成的专业知识。作为一个实际
另一种选择是,我的研究项目开发了碳水化合物修饰的肽,
糖基化蛋白质的合成类似物。拟议的研究计划将研究如何
糖基化影响肽折叠作为蛋白质折叠的替代,并将使用这些见解,
设计新的生物材料。支持拟议研究的初步数据表明,
糖基化可以促进合成的B-折叠折叠肽分级自组装成各向异性的
排列的纳米纤维网络。这些各向异性网络抵抗非特异性生物相互作用,
选择性地识别碳水化合物结合蛋白,这是由于组装的碳水化合物的紧急功能
变成了多价结构。这项研究的首要假设是,
通过建立介导特异性的分子间力来影响肽的折叠和折叠功能
结合相互作用,同时防止非特异性关联。为了测试这一点,我们将首先开发一种方法,
用广泛的碳水化合物修饰的絮凝肽文库的可扩展的、成本有效的合成
化学然后我们将利用这个库来研究糖基化对肽动力学的影响
使用各种生物物理方法对所得纳米纤维进行纤维化和平衡形态学分析。在一起,
这些研究将建立对糖基化作为肽的结构决定因素的基本理解
固定化最后,我们将评估糖基化肽纳米纤维作为生物材料,
和润滑素的功能,一种软骨糖蛋白,在关节表面提供边界润滑,
骨关节炎进展期间丢失。虽然我们使用合成的凝血肽作为模型系统,但一般来说,
通过这项研究计划所作的观察,预计将适用于生物物理学的自然
此外,它还可能有助于理解粘蛋白和其他密集糖基化的蛋白质。
这项研究的成功将通过建立碳水化合物作为超分子生物材料,
一类新的控制肽折叠的分子基序。最终,这项研究将支持未来
努力开发具有生物医学所需的新结构和功能特性的生物材料,
通过产生用遍及自然界的各种碳水化合物化学修饰的肽来应用。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Medical Applications of Glycomaterials.
糖材料的医学应用。
- DOI:10.1002/adhm.202200096
- 发表时间:2022
- 期刊:
- 影响因子:10
- 作者:Hudalla,GregoryA
- 通讯作者:Hudalla,GregoryA
Glycosylation of a Nonfibrillizing Appendage Alters the Self-Assembly Pathway of a Synthetic β-Sheet Fibrillizing Peptide.
- DOI:10.1021/acs.jpcb.1c02083
- 发表时间:2021-06-24
- 期刊:
- 影响因子:3.3
- 作者:Zuo, Ran;Liu, Renjie;Olguin, Juanpablo;Hudalla, Gregory A.
- 通讯作者:Hudalla, Gregory A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Hudalla其他文献
Gregory Hudalla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Hudalla', 18)}}的其他基金
SUPRAMOLECULAR PEPTIDE CO-ASSEMBLIES FOR CYTOSOLIC PROTEIN DELIVERY
用于胞浆蛋白递送的超分子肽共组装体
- 批准号:
10704128 - 财政年份:2022
- 资助金额:
$ 9.61万 - 项目类别:
SUPRAMOLECULAR PEPTIDE CO-ASSEMBLIES FOR CYTOSOLIC PROTEIN DELIVERY
用于胞浆蛋白递送的超分子肽共组装体
- 批准号:
10430322 - 财政年份:2022
- 资助金额:
$ 9.61万 - 项目类别:
Glycosylation as a Structural Determinant in Peptide Fibrillization
糖基化作为肽纤维化的结构决定因素
- 批准号:
10649457 - 财政年份:2019
- 资助金额:
$ 9.61万 - 项目类别:
Glycosylation as a Structural Determinant in Peptide Fibrillization
糖基化作为肽纤维化的结构决定因素
- 批准号:
10441493 - 财政年份:2019
- 资助金额:
$ 9.61万 - 项目类别:
Glycosylation as a Structural Determinant in Peptide Fibrillization
糖基化作为肽纤维化的结构决定因素
- 批准号:
10200093 - 财政年份:2019
- 资助金额:
$ 9.61万 - 项目类别:
Glycosylation as a Structural Determinant in Peptide Fibrillization
糖基化作为肽纤维化的结构决定因素
- 批准号:
9797690 - 财政年份:2019
- 资助金额:
$ 9.61万 - 项目类别:
Supramolecular hydrogels for localized delivery of immunomodulatory enzymes
用于局部递送免疫调节酶的超分子水凝胶
- 批准号:
9374827 - 财政年份:2017
- 资助金额:
$ 9.61万 - 项目类别:
Supramolecular hydrogels for localized delivery of immunomodulatory enzymes
用于局部递送免疫调节酶的超分子水凝胶
- 批准号:
9750094 - 财政年份:2017
- 资助金额:
$ 9.61万 - 项目类别:
Modular Nanomedicines Based on Heterogeneous Fusion Protein Co-Assembly
基于异质融合蛋白共组装的模块化纳米药物
- 批准号:
9145217 - 财政年份:2015
- 资助金额:
$ 9.61万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 9.61万 - 项目类别:
Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 9.61万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 9.61万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 9.61万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 9.61万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 9.61万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 9.61万 - 项目类别:
Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 9.61万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 9.61万 - 项目类别:
Standard Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 9.61万 - 项目类别:
Fellowship














{{item.name}}会员




