Glycosylation as a Structural Determinant in Peptide Fibrillization
糖基化作为肽纤维化的结构决定因素
基本信息
- 批准号:10649457
- 负责人:
- 金额:$ 37.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:ArchitectureBindingBiocompatible MaterialsBiologicalBiological ModelsBiophysicsCarbohydrate ChemistryCarbohydratesCartilageCell surfaceDataDegenerative polyarthritisDiseaseEquilibriumFutureGlycoproteinsHealthHumanJointsKineticsKnowledgeLibrariesLubricationMediatingMethodsModificationMolecularMorphologyMucinsNaturePeptidesProductionPropertyProtein GlycosylationProteinsResearchRoleSortingSurfaceTestinganalogbeta pleated sheetbiophysical techniquescarbohydrate analogcarbohydrate binding proteincarbohydrate receptorcost effectivedesignglycosylationinsightlubricinnanofiberpreventprogramsprotein foldingself assemblystructural determinantssuccess
项目摘要
Project Summary. All human cell surfaces and nearly half of all human proteins are decorated with
carbohydrates (i.e., glycosylated), yet our understanding of the role of glycosylation in health and disease
remains limited. Increasing evidence is establishing a central role for glycosylation as a determinant of protein
folding, sorting, processing, export, and function. Advancing this understanding requires platforms to
systematically study changes in protein form and function resulting from altered glycosylation, which has
historically required highly specialized expertise in protein production and carbohydrate synthesis. As a practical
alternative, my research program develops carbohydrate-modified peptides that self-assemble into fibrillar
architectures as synthetic analogs of glycosylated proteins. The proposed research program will study how
glycosylation influences peptide fibrillization as a surrogate for protein folding, and will use these insights to
enable design of new biomaterials. Preliminary data supporting the proposed research demonstrate that
glycosylation can facilitate hierarchical self-assembly of a synthetic b-sheet fibrillizing peptide into anisotropic
networks of aligned nanofibers. These anisotropic networks resist non-specific biological interactions yet
selectively recognize carbohydrate-binding proteins due to the emergent function of carbohydrates assembled
into a multivalent architecture. The overarching hypothesis of the proposed research is that glycosylation
influences peptide fibrillization and nanofiber function by establishing intermolecular forces that mediate specific
binding interactions while preventing non-specific associations. To test this, we will first develop a method for
scalable, cost-effective synthesis of a library of fibrillizing peptides modified with a broad range of carbohydrate
chemistries. Then we will use this library to study the influence of glycosylation on the kinetics of peptide
fibrillization and equilibrium morphology of the resultant nanofibers using various biophysical methods. Together,
these studies will establish fundamental understanding of glycosylation as a structural determinant in peptide
fibrillization. Finally, we will evaluate glycosylated peptide nanofibers as biomaterials that recapitulate the form
and function of lubricin, a cartilage glycoprotein that provides boundary lubrication at the joint surface, which is
lost during osteoarthritis progression. Although we use synthetic fibrillizing peptides as a model system, general
observations made through this research program are expected to be applicable to the biophysics of natural
fibrillizing peptides, and may also inform understanding of mucins and other densely glycosylated proteins.
Success of this research will advance the field of supramolecular biomaterials by establishing carbohydrates as
a new class of molecular motif for controlling peptide fibrillization. Ultimately, this research will support future
efforts to develop biomaterials with new structural and functional properties that are desirable for biomedical
applications by creating peptides modified with diverse carbohydrate chemistries found throughout nature.
项目摘要。所有的人类细胞表面和近一半的人类蛋白质都装饰着
碳水化合物(即糖基化),但我们对糖基化在健康和疾病中的作用的理解
仍然是有限的。越来越多的证据正在确立糖基化作为蛋白质决定因素的核心作用
折叠、排序、处理、导出和功能。推进这一理解需要平台来
系统地研究糖基化改变引起的蛋白质形态和功能的变化,这有
历史上需要在蛋白质生产和碳水化合物合成方面具有高度专业化的专业知识。作为一个实用的
作为替代方案,我的研究项目开发了碳水化合物修饰的多肽,这些多肽可以自组装成纤维
作为糖基化蛋白质的合成类似物的结构。拟议的研究计划将研究如何
糖基化作为蛋白质折叠的替代物会影响多肽的纤维化,并将利用这些见解来
使新生物材料的设计成为可能。支持这项研究的初步数据表明,
糖基化可以促进合成的b-折叠纤化多肽分级自组装成各向异性
排列的纳米纤维网络。这些各向异性网络还抵制非特定的生物相互作用。
由于组装的碳水化合物的紧急功能,选择性地识别碳水化合物结合蛋白
变成了一个多价位的架构。这项拟议研究的主要假设是糖基化
通过建立分子间作用力来影响多肽的纤化和纳米纤维的功能
在防止非特定关联的同时进行绑定交互。为了测试这一点,我们将首先开发一种方法来
大范围碳水化合物修饰的纤毛肽文库的可扩展、经济高效的合成
化学药学。然后,我们将利用这个文库来研究糖基化对多肽动力学的影响
利用各种生物物理方法对所得纳米纤维的纤化和平衡形态进行了研究。一起,
这些研究将建立对糖基化作为多肽结构决定因素的基本理解
流光化。最后,我们将评估糖基化多肽纳米纤维作为生物材料的重要性。
以及润滑素的作用,这是一种软骨糖蛋白,在关节表面提供边界润滑,这是
在骨性关节炎进展过程中丢失。虽然我们使用人工合成的发光肽作为模型系统,但一般
通过这一研究计划所做的观察可望应用于自然界的生物物理学。
刺激多肽,也可能有助于理解粘蛋白和其他糖基化蛋白。
这项研究的成功将推动超分子生物材料领域的发展,因为它将碳水化合物建立为
一类新的控制多肽纤化的分子基序。最终,这项研究将支持未来
努力开发具有生物医学所需的新结构和功能特性的生物材料
通过创造用自然界中发现的各种碳水化合物化学修饰的多肽来应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Hudalla其他文献
Gregory Hudalla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Hudalla', 18)}}的其他基金
SUPRAMOLECULAR PEPTIDE CO-ASSEMBLIES FOR CYTOSOLIC PROTEIN DELIVERY
用于胞浆蛋白递送的超分子肽共组装体
- 批准号:
10704128 - 财政年份:2022
- 资助金额:
$ 37.56万 - 项目类别:
SUPRAMOLECULAR PEPTIDE CO-ASSEMBLIES FOR CYTOSOLIC PROTEIN DELIVERY
用于胞浆蛋白递送的超分子肽共组装体
- 批准号:
10430322 - 财政年份:2022
- 资助金额:
$ 37.56万 - 项目类别:
Glycosylation as a Structural Determinant in Peptide Fibrillization
糖基化作为肽纤维化的结构决定因素
- 批准号:
10441493 - 财政年份:2019
- 资助金额:
$ 37.56万 - 项目类别:
Glycosylation as a Structural Determinant in Peptide Fibrillization
糖基化作为肽纤维化的结构决定因素
- 批准号:
10200093 - 财政年份:2019
- 资助金额:
$ 37.56万 - 项目类别:
Glycosylation as a Structural Determinant in Peptide Fibrillization
糖基化作为肽纤维化的结构决定因素
- 批准号:
9797690 - 财政年份:2019
- 资助金额:
$ 37.56万 - 项目类别:
Administrative Supplement: Glycosylation as a Structural Determinant in Peptide Fibrillization
行政补充:糖基化作为肽纤维化的结构决定因素
- 批准号:
10802588 - 财政年份:2019
- 资助金额:
$ 37.56万 - 项目类别:
Supramolecular hydrogels for localized delivery of immunomodulatory enzymes
用于局部递送免疫调节酶的超分子水凝胶
- 批准号:
9374827 - 财政年份:2017
- 资助金额:
$ 37.56万 - 项目类别:
Supramolecular hydrogels for localized delivery of immunomodulatory enzymes
用于局部递送免疫调节酶的超分子水凝胶
- 批准号:
9750094 - 财政年份:2017
- 资助金额:
$ 37.56万 - 项目类别:
Modular Nanomedicines Based on Heterogeneous Fusion Protein Co-Assembly
基于异质融合蛋白共组装的模块化纳米药物
- 批准号:
9145217 - 财政年份:2015
- 资助金额:
$ 37.56万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Fellowship
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Discovery Projects
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Research Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 37.56万 - 项目类别:
Discovery Projects