Optical Control of Protein Activity in Live Cells by Plasmon Assisted Light Inactivation
通过等离激元辅助光灭活对活细胞中蛋白质活性的光学控制
基本信息
- 批准号:10799344
- 负责人:
- 金额:$ 24.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAffectAreaAwardBiochemicalBiologyBiomedical TechnologyCellsCouplingElectronsEndotheliumEnvironmentEquipmentG-Protein-Coupled ReceptorsGoldHeatingImageInvestigationIon ChannelLasersLightLocationMechanicsMediatingMembraneModern MedicineOptical MethodsOpticsParentsPathway interactionsPhysiologic pulsePiezo 1 ion channelProcessProteinsResolutionSignal TransductionSilicon DioxideSurfaceSystemTemperatureThinnessTimeWaterWorkbiological systemscellular imagingextracellularimaging capabilitiesimaging systeminsightinterfacialnanoGoldnanomaterialsnanometernanoparticlenanoscalenanosecondnovelplasmonicsreal-time imagesreceptorremote controlresponsesuccesstooltwo-photon
项目摘要
Abstract
Optical tools have unparalleled spatial and temporal precision and have been instrumental to better understand
various processes in modern medicine and biology. The parent R35 award focuses on developing tools for
optical control of protein activity in live cells, based on pulsed laser heating of plasmonic nanoparticles, and its
thermally confined heating to unfold and denature surrounding proteins within a few nanometers of
nanoparticle surface. The focus of the parent R35 is two-fold: (1) better understand the laser-nanomaterial
interactions including the nanoscale temperature in the proximity of the nanoparticle and biochemical
responses of the affected proteins; and (2) developing this new optical tool to manipulate protein activity in live
cells with emphasis on G-protein coupled receptors (GPCR), an important and diverse class of membrane
receptors that mediate extracellular to intracellular signaling. Our recent studies have revealed that shorter
picosecond laser stimulation leads to a significant enhancement of the photoacoustic response for gold
nanoparticles coated with a thin shell of silica (Au@SiO2), due to the direct electron-phonon (e-ph) coupling
across the gold-silica interface and enhanced interfacial heat transfer at the silica-water interface. We further
discovered that the picosecond laser excitation of endothelial-targeted gold nanoparticles (AuNPs) generates a
nanoscale mechanical perturbation, or photoacoustic effect, and activates mechanosensitive ion channels
(TRPV4, Piezo1) and G-protein coupled receptors in live cells. We would like to further continue these
investigations by elucidating the mechanism and building biomedical technologies to remotely control the
receptor and cell activities with optical resolution. This proposed supplement requests an integrated two-
photon stimulation and imaging system to enable these efforts. The scientific rationale is that shorter
femtosecond laser stimulation creates a stronger non-equilibrium than even with picosecond or nanosecond
laser stimulation, and generates nanoscale mechanical/acoustic response to optically control receptor and cell
activities. Our current ongoing studies would benefit from this integrated stimulation and imaging system, as
the currently used lasers can be integrated into the optical pathways of the system and utilize the real-time
imaging capability. This proposed supplemental equipment fits the scope of the parent award since it would
provide a system to (1) access broader timescales by laser-nanomaterial interactions; (2) provide an optical
system to allow real-time stimulation and imaging of cellular activities in its native environment; (3) investigate
how the pulsed laser including femtosecond laser can control protein activity and cellular responses. All these
efforts require integrated stimulation and imaging. Therefore the requested supplement provides an exciting
opportunity to investigate the fundamental mechanism of laser-nanomaterial interactions and build biomedical
technologies for optical control of the receptor and cellular activities.
摘要
光学工具具有无与伦比的空间和时间精度,有助于更好地理解
现代医学和生物学中的各种过程。母公司R35奖专注于开发工具,以
基于等离子体纳米粒子脉冲激光加热的活细胞中蛋白质活性的光学控制及其
热限制加热以在几纳米范围内展开和变性周围的蛋白质
纳米颗粒表面。母体R35的重点是两个方面:(1)更好地理解激光-纳米材料
相互作用,包括纳米颗粒附近的纳米级温度和生化
受影响的蛋白质的反应;以及(2)开发这种新的光学工具来操纵活体中的蛋白质活性
细胞,侧重于G蛋白偶联受体(GPCR),这是一类重要的和多样化的膜
介导细胞外信号到细胞内信号的受体。我们最近的研究表明,更短的时间
皮秒激光刺激导致金的光声响应显著增强
由于电子-声子(e-ph)的直接耦合,包覆了一层薄二氧化硅(Au@SiO_2)的纳米颗粒
通过金-硅胶界面,增强了硅胶-水界面的界面热传递。我们进一步
发现内皮靶向金纳米颗粒(AuNPs)的皮秒激光激发产生了
纳米尺度的机械扰动,或光声效应,并激活机械敏感离子通道
(TRPV4,Piezo1)和G蛋白偶联受体在活细胞中。我们希望进一步继续这些
通过阐明机制和建立生物医学技术来远程控制
受体和细胞活性与光学分辨率。这项拟议的补编要求综合两项-
光子刺激和成像系统使这些努力成为可能。科学上的理由就是这么短
飞秒激光刺激产生了比皮秒或纳秒更强的非平衡
激光刺激,并产生纳米级的机械/声学响应,以光学控制受体和细胞
活动。我们目前正在进行的研究将受益于这种集成的刺激和成像系统,因为
目前使用的激光器可以集成到系统的光路中,并利用实时
成像能力。这项拟议的补充设备符合母公司授予的范围,因为它将
提供一种系统,以(1)通过激光-纳米材料相互作用获得更广泛的时间尺度;(2)提供光学
允许实时刺激和成像其自然环境中的细胞活动的系统;(3)调查
包括飞秒激光在内的脉冲激光如何控制蛋白质活性和细胞反应。所有这些都是
这些努力需要综合的刺激和成像。因此,所要求的补充材料提供了一个令人兴奋的
研究激光-纳米材料相互作用的基本机制并建立生物医学的机会
光学控制受体和细胞活动的技术。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single pulse heating of a nanoparticle array for biological applications.
- DOI:10.1039/d1na00766a
- 发表时间:2022-05-07
- 期刊:
- 影响因子:4.7
- 作者:Xie, Chen;Kang, Peiyuan;Cazals, Johan;Castelan, Omar Morales;Randrianalisoa, Jaona;Qin, Zhenpeng
- 通讯作者:Qin, Zhenpeng
Spatiotemporal Evolution of Temperature During Transient Heating of Nanoparticle Arrays.
- DOI:10.1115/1.4053196
- 发表时间:2022-03-01
- 期刊:
- 影响因子:0
- 作者:Xie C;Qin Z
- 通讯作者:Qin Z
Curvature and temperature-dependent thermal interface conductance between nanoscale gold and water.
纳米级金和水之间的曲率和温度相关的热界面电导。
- DOI:10.1063/5.0090683
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wilson,BlakeA;Nielsen,StevenO;Randrianalisoa,JaonaH;Qin,Zhenpeng
- 通讯作者:Qin,Zhenpeng
Mechanobiological modulation of blood-brain barrier permeability by laser stimulation of endothelial-targeted nanoparticles.
通过激光刺激内皮靶向纳米粒子对血脑屏障渗透性进行机械生物学调节。
- DOI:10.1039/d2nr05062e
- 发表时间:2023
- 期刊:
- 影响因子:6.7
- 作者:Li,Xiaoqing;Cai,Qi;Wilson,BlakeA;Fan,Hanwen;Dave,Harsh;Giannotta,Monica;Bachoo,Robert;Qin,Zhenpeng
- 通讯作者:Qin,Zhenpeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenpeng Qin其他文献
Zhenpeng Qin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenpeng Qin', 18)}}的其他基金
Rapid Viral Diagnostic Test by Digital Plasmonic Nanobubbles
利用数字等离子体纳米气泡进行快速病毒诊断测试
- 批准号:
10547200 - 财政年份:2022
- 资助金额:
$ 24.93万 - 项目类别:
Rapid Viral Diagnostic Test by Digital Plasmonic Nanobubbles
利用数字等离子体纳米气泡进行快速病毒诊断测试
- 批准号:
10665073 - 财政年份:2022
- 资助金额:
$ 24.93万 - 项目类别:
Rapid Diagnostic Test for Respiratory Syncytial Virus by Digital Nanobubbles
数字纳米气泡对呼吸道合胞病毒的快速诊断测试
- 批准号:
10627753 - 财政年份:2020
- 资助金额:
$ 24.93万 - 项目类别:
Rapid Diagnostic Test for Respiratory Syncytial Virus by Digital Nanobubbles
数字纳米气泡对呼吸道合胞病毒的快速诊断测试
- 批准号:
10155417 - 财政年份:2020
- 资助金额:
$ 24.93万 - 项目类别:
Rapid Diagnostic Test for Respiratory Syncytial Virus by Digital Nanobubbles
数字纳米气泡对呼吸道合胞病毒的快速诊断测试
- 批准号:
10394257 - 财政年份:2020
- 资助金额:
$ 24.93万 - 项目类别:
Optical Control of Protein Activity in Live Cells by Plasmon Assisted Light Inactivation
通过等离激元辅助光灭活对活细胞中蛋白质活性的光学控制
- 批准号:
10698186 - 财政年份:2019
- 资助金额:
$ 24.93万 - 项目类别:
Optical Control of Protein Activity in Live Cells by Plasmon Assisted Light Inactivation
通过等离激元辅助光灭活对活细胞中蛋白质活性的光学控制
- 批准号:
10223375 - 财政年份:2019
- 资助金额:
$ 24.93万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 24.93万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 24.93万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 24.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 24.93万 - 项目类别:
Studentship














{{item.name}}会员




