Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
基本信息
- 批准号:10818676
- 负责人:
- 金额:$ 13.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-17 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintActinsAerobic ExerciseAffectAgeAnatomyApplications GrantsAreaAtherosclerosisBiochemicalBiocompatible MaterialsBiological AvailabilityBiomechanicsBlood VesselsBlood flowCardiovascular DiseasesCardiovascular systemCarotid ArteriesCell LineCellsCharacteristicsClinicalClinical MarkersCollagenComputer ModelsCultured CellsDataDigital Imaging and Communications in MedicineDown-RegulationElasticityEndothelial CellsEndothelin-1EndotheliumEpigenetic ProcessEpoprostenolExerciseFutureGene ExpressionGenesGeneticGenetic TranscriptionGlycocalyxHealth ProfessionalHomeostasisHumanHypertensionImageImmunohistochemistryIn VitroInflammatoryIntercellular adhesion molecule 1LaboratoriesLengthMagnetic Resonance ImagingMechanicsMedicineMessenger RNAModelingMolecularNitric OxideNursesObesityOxidative StressPathway interactionsPatientsPatternPhysiologicalPolymerase Chain ReactionPrintingProcessPropertyProteinsRehabilitation therapyReportingResearchRestReverse TranscriptionShapesStressStress FibersStrokeStructural ProteinSurfaceTechnologyTestingTunica IntimaVascular Cell Adhesion Molecule-1Western Blottingalpha Actininbioprintingcardiovascular healthcardiovascular risk factorcerebrovascularendothelial dysfunctionexercise intensityexercise physiologistexercise programexperimental studyhemodynamicsheparin proteoglycanhuman modelhypercholesterolemiaimaging studyimprovedin vivomechanotransductionpersonalized medicinephysical therapistprogramsprotective factorsprotein expressionreceptorshear stressstandard carestressorstroke survivorthree-dimensional modelingtranscription factortranslational approachtransmission process
项目摘要
Summary
Approximately nine out of 10 cerebrovascular attacks are due to atherosclerosis. Additionally, endothelial
dysfunction is currently accepted as the first pathophysiological step toward atherosclerosis. Endothelial cell
homeostasis and gene expression is highly regulated via shear stress, which is directly associated with blood
flow changes. Aerobic exercise (AX) has been associated with improved cardiovascular (CV) health. However,
only ~50% of the beneficial effects of AX are explained via improvements on traditional CV risk factors (e.g.,
hypertension, hypercholesterolemia, obesity). The remainder ~50% of the beneficial effects of AX are
unknown. Moreover, traditionally controlled AX does not provide personalized medicine, which could account
for a high number of non-responders. Therefore, the main purpose of this proposal is to develop a 3D
synthetic model of the human carotid artery using 3D bio-printing technology to simulate in vivo
personalized AX-induced blood flow patterns and endothelial shear stress and to determine gene
expression/transcription and molecular changes in endothelial cultured cells in vitro. Based on previous
reports and our preliminary data we hypothesize that a 3D synthetic model of the carotid artery will respond to
exercise-induced blood flow patterns as a normal carotid artery. In addition, we hypothesize that endothelial
cultured cells under similar blood flow patterns and shear stress will increase the expression of
atherosclerosis-protective mRNA/proteins (e.g., eNOS, PGI2, and SOD) and structural mRNA/proteins (e.g.,
actin, heparin sulfate proteoglycan [glycocalyx], and α-actinin-bundled stress fibers), and a decrease of pro-
atherosclerosis and pro-inflammatory mRNA/protein expression (e.g., ICAM-1, VCAM-1, and ET-1) in a similar
intensity-dependent manner. First, we will determine biomechanical properties (e.g., vessel distensibility and
compliance) of the carotid artery in vivo during resting conditions and at 3 AX intensities in healthy, young
subjects, patients with stroke, and age-matched controls. Then, subjects will undergo a magnetic resonance
imaging (MRI) study to determine the exact shape (e.g., length and contour) of same tested carotid artery and
the images will be used to build a 3D synthetic model via 3D bio-printing. The 3D synthetic model will mimic
more anatomical and hemodynamic conditions, which will allow for more physiological in vitro experiments.
Secondly, we will perform several flow patterns in endothelial cultured cells seeded on the 3D synthetic model.
Flow patterns will be similar to those patterns observed during in vivo studies. After applying the different flow
patterns, cells will be collected and processed to determine changes in specific gene transcription factors and
protein expression. By characterizing blood flow patterns during different intensities of AX and determining the
gene expression/transcription and molecular changes in endothelial cells under these same blood flow
patterns, using a ‘reverse’ translation approach, we will explain the mechanisms of the cardiovascular
protective factors associated with AX as personalized medicine, especially in stroke survivors.
总结
大约十分之九的脑血管病发作是由于动脉粥样硬化。此外,内皮
功能障碍目前被认为是动脉粥样硬化的第一个病理生理步骤。内皮细胞
体内平衡和基因表达通过剪切应力高度调节,剪切应力与血液直接相关。
流量变化。有氧运动(AX)与改善心血管(CV)健康有关。但是,在这方面,
只有~50%的AX的有益效果是通过对传统CV风险因素的改善来解释的(例如,
高血压、高胆固醇血症、肥胖症)。AX的其余~50%的有益效果是
未知此外,传统控制的AX不提供个性化的药物,这可能导致
对于大量的无反应者。因此,本提案的主要目的是开发3D
使用3D生物打印技术模拟活体的人颈动脉合成模型
个性化AX诱导的血流模式和内皮剪切应力,并确定基因
表达/转录和分子变化。基于先前
报告和我们的初步数据,我们假设颈动脉的3D合成模型将响应于
运动诱发的血流模式与正常颈动脉相同。此外,我们假设内皮细胞
在相似的血流模式和剪切应力下培养的细胞将增加
动脉粥样硬化保护性mRNA/蛋白(例如,eNOS、PGI 2和SOD)和结构mRNA/蛋白质(例如,
肌动蛋白、硫酸肝素蛋白聚糖[糖萼]和α-肌动蛋白束应力纤维),以及前
动脉粥样硬化和促炎mRNA/蛋白质表达(例如,ICAM-1、VCAM-1和ET-1)在类似的
强度依赖的方式。首先,我们将确定生物力学特性(例如,血管扩张性和
顺应性)的颈动脉在体内在静息条件下和在3 AX强度在健康,年轻
受试者、中风患者和年龄匹配的对照。然后,受试者将接受磁共振检查
成像(MRI)研究以确定确切的形状(例如,长度和轮廓),
这些图像将用于通过3D生物打印来构建3D合成模型。3D合成模型将模拟
更多的解剖学和血液动力学条件,这将允许更多的生理体外实验。
其次,我们将在3D合成模型上接种的内皮培养细胞中执行几种流动模式。
流动模式将与体内研究期间观察到的模式相似。在应用不同的流量后,
模式,细胞将被收集和处理,以确定特定基因转录因子的变化,
蛋白质表达通过表征不同AX强度期间的血流模式并确定
在这些相同的血流条件下,内皮细胞的基因表达/转录和分子变化
模式,使用“反向”翻译方法,我们将解释心血管疾病的机制。
与AX作为个体化药物相关的保护因素,尤其是在卒中幸存者中。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Differences in Blood Flow Patterns and Endothelial Shear Stress at the Carotid Artery Using Different Exercise Modalities and Intensities.
- DOI:10.3389/fphys.2022.857816
- 发表时间:2022
- 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alvaro N Gurovich其他文献
Alvaro N Gurovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alvaro N Gurovich', 18)}}的其他基金
Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
- 批准号:
10606026 - 财政年份:2022
- 资助金额:
$ 13.35万 - 项目类别:
Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
- 批准号:
10801834 - 财政年份:2021
- 资助金额:
$ 13.35万 - 项目类别:
Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
- 批准号:
10599213 - 财政年份:2021
- 资助金额:
$ 13.35万 - 项目类别:
Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
- 批准号:
10406351 - 财政年份:2021
- 资助金额:
$ 13.35万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 13.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 13.35万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 13.35万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 13.35万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 13.35万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 13.35万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 13.35万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 13.35万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 13.35万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 13.35万 - 项目类别:
Standard Grant