Connectomes-related to Active Methamphetamine-dependence Project (CAMP)
与主动甲基苯丙胺依赖项目 (CAMP) 相关的连接组
基本信息
- 批准号:10816286
- 负责人:
- 金额:$ 26.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-05 至 2024-03-07
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAdultAffectiveAnxietyBiologicalBiological FactorsBrainBrain imagingCommunitiesDataData SetDevelopmentDiagnosticDiseaseDrug AddictionDrug usageEnsureEvaluationEventFamily history ofFoundationsFundingFutureGoalsHumanImageIndividualIntakeInterpersonal ViolenceInterventionInterviewJob lossMachine LearningMagnetic Resonance ImagingMapsMeasuresMental DepressionMethamphetamineMethamphetamine dependenceModelingNeurocognitiveNeuropsychologyOccupationalOutcomeOutcome MeasureOverdoseParticipantPatternPerformancePrediction of Response to TherapyPreventionProbabilityPsychiatric DiagnosisPsychological FactorsPsychosesRecording of previous eventsReportingResearchRewardsRiskRural drug addictionSamplingSocial NetworkSocial supportSymptomsSystemTechniquesTimeTrainingValidationaddictionbiopsychosocialconnectomedata-driven modelimprovedindexinginsightlongitudinal analysismachine learning modelmethamphetamine usemultimodalityneuralneuroimagingopen dataoutcome predictionoverdose deathpeer networkspredictive modelingpsychologicpsychosocialpsychostimulantsocialsocial factorsstandardize measuresubstance usesuccessviolence exposure
项目摘要
Despite reports of declining methamphetamine use in the early 2000’s, psychostimulant-related overdose
deaths in the US, of which methamphetamine is primarily involved, increased ~1,800% from 1999-2017.
Currently, identifying IDM who are in the greatest need for intervention is only discovered after catastrophic
events have occurred (e.g., overdose, arrest, job loss). Thus, there is an urgent necessity for objective means
of identifying IDM at-risk for such devastating consequences, before these consequences can occur.
Previous studies have shown correlations between independent measures of biological, psychological, and
social factors and critical outcomes (e.g., substance use patterns) in individuals dependent upon
methamphetamine (IDM). However, no research has leveraged the combined power of biological,
psychological, and social measures to the predict outcomes in IDM. Recent success combining neuroimaging
(biological) and psychosocial measures with advanced machine-learning techniques to predict treatment or
diagnostic outcomes in substance use and other disorders establish a precedent for achieving similar
success in IDM. This project seeks to collect the first ever neuroimaging (magnetic resonance imaging [MRI],
psychological (e.g., anxiety, depression, and psychosis symptoms), and social (e.g., interpersonal violence
histories, peer network drug use) dataset from IDM (Aim 1). MRI data will be collected using state-of-the art
sequences adopted from the Human Connectome Project and all data will made openly available allowing
for the global scientific community opportunities to gain limitless insights from these unique data. Here, data
will be used in machine-learning models for the prediction of two critical outcomes in IDM: substance use
patterns and occupational functioning over a 6-month time period (Aim 2). Machine-learning models
developed as part of this project will result in future funding proposals focusing on extending longitudinal
analyses (e.g., 3-5 years) and acquiring additional participants for model evaluation. The long-term goal of
this research is the development of predictive models quantifying an IDM’s probability of improving or
worsening addiction and addiction-related consequences. In this way, this project will provide the foundation
for objective, biopsychosocial models tailored toward the prediction and eventual prevention of greater harms
to IDM.
尽管有报告称,2000年初甲基苯丙胺的使用有所下降,但与精神兴奋剂有关的过量使用
在美国,主要涉及甲基苯丙胺的死亡人数从1999年到2017年增加了约1,800%。
目前,确定最需要干预的IDM只有在发生灾难性事件后才能发现。
事件已经发生(例如,吸毒过量、被捕、失业)。因此,迫切需要客观手段,
在这些后果可能发生之前,确定IDM处于这种破坏性后果的风险之中。
先前的研究表明,生物学、心理学和生物学的独立测量之间存在相关性。
社会因素和关键结果(例如,物质使用模式),
甲基苯丙胺(IDM)。然而,还没有研究利用生物,
心理和社会措施来预测IDM的结果。最近的成功结合神经成像
(生物)和心理社会措施与先进的机器学习技术,以预测治疗或
物质使用和其他疾病的诊断结果为实现类似的
IDM的成功该项目旨在收集有史以来第一个神经成像(磁共振成像[MRI],
心理的(例如,焦虑、抑郁和精神病症状),和社交(例如,人际暴力
历史,同伴网络药物使用)数据集来自IDM(目标1)。将使用最新技术水平采集MRI数据
从人类连接组项目中采用的序列,所有数据都将公开提供,
全球科学界有机会从这些独特的数据中获得无限的见解。在这里,数据
将被用于机器学习模型中,以预测IDM中的两个关键结果:物质使用
在6个月的时间内,对模式和职业功能进行评估(目标2)。机器学习模型
作为该项目的一部分,将导致未来的资金建议,重点是扩大纵向
分析(例如,3-5年),并获得额外的参与者进行模型评估。的长期目标
这项研究是预测模型的发展量化IDM的概率改善或
成瘾和成瘾相关后果的恶化。这样,这个项目将提供基础
为预测和最终预防更大的危害而量身定制的客观的生物心理社会模型
到IDM。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Hubbard其他文献
Nicholas Hubbard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Hubbard', 18)}}的其他基金
Connectomes-related to Active Methamphetamine-dependence Project (CAMP)
与主动甲基苯丙胺依赖项目 (CAMP) 相关的连接组
- 批准号:
10377951 - 财政年份:2019
- 资助金额:
$ 26.1万 - 项目类别:
Adolescent Brain Bases of Intergenerational Risk for Depression
青少年抑郁症代际风险的大脑基础
- 批准号:
9396635 - 财政年份:2017
- 资助金额:
$ 26.1万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 26.1万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 26.1万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 26.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 26.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 26.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




