Understanding the Conceptual Priority Map Guiding Naturalistic Visual Attention for Autistic Individuals
了解指导自闭症患者自然视觉注意力的概念优先级图
基本信息
- 批准号:10829114
- 负责人:
- 金额:$ 4.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-11 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdultAreaArticulationAttentionBehaviorBehavioralBiological MarkersBrainCategoriesCharacteristicsChildClassificationClinicalCommunicationComplementComplexComputer Vision SystemsData AnalysesDevelopmentDiagnosticEnvironmentExperimental DesignsFaceFingerprintGeneticGoalsGrainIndividualIndividuationKnowledgeLabelLanguageLanguage DelaysLinkMapsMatched GroupMeasuresMental ProcessesMindModelingMovementNatural Language ProcessingNatureNeurobiologyParticipantPatternPerformancePersonsPopulationPositioning AttributePostdoctoral FellowPsyche structureResearchScienceSensorySocial ConceptsSourceStatistical Data InterpretationStimulusStructureTechniquesTestingTextTimeTrainingUnited States National Institutes of HealthVisionVisualVisual attentionadult with autism spectrum disorderartificial neural networkautism spectrum disorderautisticcareerclinical diagnosisclinically actionabledesigndiagnostic biomarkerdirected attentionexperiencegazehigh dimensionalityimprovedindividuals with autism spectrum disorderinterestnovelnovel strategiespsychologicskill acquisitionskillssocialsocial attentionstemtheoriestooltraitverbalvirtual realityvisual processingvisual stimulusvisual tracking
项目摘要
Project Summary
Visual attention differences are a promising diagnostic marker for autism spectrum conditions (ASC). Yet,
despite mounting evidence for group-level differences in visual attention, particularly for visual attention directed
toward socially relevant information (i.e., “social gaze”) between autistic and non-autistic individuals, the source
of gaze differences in autism remains unclear. Prominent theories of social gaze differences focus heavily on a
particular category of visual stimuli, namely: faces. What these theories leave unanswered is whether reduced
social attention is, in fact, best explained by atypical attention to a specific stimulus class or whether it reflects
an underlying reduction in attention to distributed (face and non-face) sources of important social information in
complex environments. In other words, social information may not be limited to a single visual category, and it
may not be categorical in nature at all. Yet, by focusing on object categories, eyetracking analyses have failed
to capture the richness and complexity of real-world environments in which visual attention supports an
individual’s behavior. In order to leverage visual attention as a clinically actionable tool, a critical knowledge gap
must be addressed: are social gaze differences in autism driven by information at the level of visual categories,
or instead, by higher-order conceptual information beyond the visual domain?
The objective of this project is to examine the impact of both categorical and conceptual levels of
information on individual and autistic group differences in visual attention. The central hypothesis is that visual
attention differences in autism stem from conceptual-level, rather than categorical-level, differences in mental
processing. To test this hypothesis, I have developed a novel approach that uses tools from computer vision
(computational neural networks; CNNs) and natural language processing (NLP) to characterize individually
unique patterns of visual attention. First, Specific Aim 1a will test whether gaze patterns reflect high-dimensional
conceptual priorities that are unique to individual participants (N = 62 non-autistic adults). Specific Aim 1b will
test whether conceptual priorities reliably guide autistic individuals’ (N = 28) gaze and can be used to classify
individuals by diagnostic status (autistic vs. non-autistic). Specific Aim 2, the postdoctoral research direction,
will extend the focus of my dissertation research, on conceptual priorities that drive visual attention, to conceptual
priorities outside the visual domain, such as language. These aims have been articulated as part of a structured
training plan designed to facilitate the transition to a postdoctoral position and independent research career. This
training plan emphasizes skill development in multivariate statistical analysis, experimental design, and scientific
communication. This training plan is sponsored by Dr. Caroline Robertson, whose expertise in autism, visual
processing, and novel experimental techniques (e.g., virtual reality) is ideally complemented by the technical and
computational strengths in the Psychological and Brain Sciences Department at Dartmouth.
项目摘要
视觉注意差异是自闭症谱系疾病(ASC)的一个很有前途的诊断标志。然而,
尽管越来越多的证据表明视觉注意在群体水平上存在差异,特别是在视觉注意定向方面
关于自闭症患者和非自闭症患者之间的社会相关信息(即“社会凝视”),来源
自闭症患者的凝视差异仍不清楚。关于社会凝视差异的著名理论主要集中在
特定类别的视觉刺激,即:人脸。这些理论没有回答的是,是否会减少
事实上,社会关注最好的解释是对特定刺激类别的非典型关注,或者它是否反映了
从根本上减少了对重要社交信息的分布式(人脸和非人脸)来源的关注
复杂的环境。换句话说,社交信息可能不限于单一的视觉类别,而且它
在性质上可能根本不是绝对的。然而,由于专注于物体类别,眼球追踪分析失败了
要捕捉真实世界环境的丰富性和复杂性,其中视觉注意力支持
个人的行为。为了利用视觉注意作为一种临床上可操作的工具,关键的知识缺口
必须解决的问题是:自闭症的社会凝视差异是由视觉类别水平的信息驱动的吗,
或者取而代之的是超越视觉领域的更高层次的概念信息?
这个项目的目标是检查分类和概念层面的影响
关于个体和自闭症群体在视觉注意力上的差异的信息。中心假设是视觉上的
自闭症患者的注意力差异源于概念水平而不是类别水平的心理差异
正在处理。为了验证这一假设,我开发了一种使用计算机视觉工具的新方法
(计算神经网络;CNN)和自然语言处理(NLP)来单独描述
独特的视觉注意力模式。首先,特定目标1a将测试凝视模式是否反映高维度
个别参与者独特的概念优先事项(N=62名非自闭症成年人)。具体目标1b将
测试概念优先级是否可靠地指导自闭症患者(N=28)的凝视,并可用于分类
按诊断状态划分的个人(自闭症与非自闭症)。具体目标二,博士后研究方向,
我将把我的论文研究的重点,关于驱动视觉注意的概念优先级,扩展到概念
视觉领域之外的优先事项,例如语言。这些目标已经作为结构化的
培训计划旨在促进向博士后职位和独立研究职业的过渡。这
培训计划强调多元统计分析、实验设计和科学的技能发展
沟通。这项培训计划由卡罗琳·罗伯逊博士赞助,她在自闭症方面的专长是视觉
处理和新的实验技术(例如,虚拟现实)理想地由技术和
达特茅斯大学心理和脑科学系的计算能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda J Haskins其他文献
Amanda J Haskins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 4.87万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 4.87万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 4.87万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 4.87万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 4.87万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 4.87万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 4.87万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 4.87万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 4.87万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 4.87万 - 项目类别:
Research Grant














{{item.name}}会员




