Metabolic control of vascular smooth muscle cell plasticity
血管平滑肌细胞可塑性的代谢控制
基本信息
- 批准号:10829610
- 负责人:
- 金额:$ 48.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:Amino AcidsAortaBindingBioinformaticsBlood VesselsBypassCarotid ArteriesCell SeparationChIP-seqCuesCyclin-Dependent KinasesDNADataDevelopmentDiseaseExhibitsFailureGenetic TranscriptionGlassGlucoseHyperplasiaIn VitroInvestigationKnockout MiceLesionLigationLightLinkLoxP-flanked alleleMapsMediatingMediatorMetabolicMetabolic ControlMetabolismMolecularMusMuscle CellsOperative Surgical ProceduresOutcomePathogenesisPathway interactionsPhenotypePilot ProjectsProcessProliferatingProtein GeranylgeranylationProto-Oncogene Proteins c-aktRegulatory ElementRoleSchemeSignal PathwaySignal TransductionSmooth Muscle MyocytesSterolsTestingVascular DiseasesVascular Smooth MuscleVascular remodelingVein graftaerobic glycolysisbeta Actincell dedifferentiationclinically relevantcombateffective therapyfatty acid oxidationin vivoinhibitorinnovationinsightmevalonatemouse modelnoveloverexpressionoxidationprotein metabolismsmall molecule inhibitortargeted treatmenttherapeutically effectivetranscriptome sequencing
项目摘要
The dedifferentiation of vascular smooth muscle cells (SMCs) into synthetic SMCs, a hallmark of many
occlusive vascular diseases, is associated with a metabolic switch that is characterized by increased aerobic
glycolysis, which also fuels mevalonate metabolism, decreased glucose oxidation and increased fatty acid
oxidation. However, the molecular links between environmental cues and the metabolic reprogramming remain
poorly understood. Our pilot studies revealed that cyclin dependent kinase 8 (CDK8) is a master regulator of
the metabolic control of vascular SMC dedifferentiation for intimal hyperplasia toward vascular occlusion.
Mechanistic investigations uncovered that CDK8 controls the SREBP2 (sterol regulatory element binding
factor-2)-operated transcription to promote the mevalonate metabolism for protein geranylgeranylation, which
drives the vascular SMC dedifferentiation. Thus, we propose a novel paradigm in which CDK8 controls the
mevalonate metabolism for protein geranylgeranylation to promote the dedifferentiation of vascular SMCs for
intimal hyperplasia, thereby contributing to occlusive vascular disease. We will test this hypothesis and
delineate the molecular mechanisms of CDK8-operated metabolic control of vascular SMC dedifferentiation by
2 specific aims: Aim 1 will establish a mediator role of CDK8 in vascular SMC dedifferentiation into synthetic
SMCs for intimal hyperplasia toward vascular occlusion; Aim 2 will determine the underlying molecular
mechanisms with a focus on the molecular network by which CDK8 operates the mevalonate metabolism
pathway for protein geranylgeranylation which is required for vascular SMC dedifferentiation into synthetic
SMCs leading to intimal hyperplasia toward vascular occlusion. This proposal will provide the first assessment
of CDK8-mediated occlusive vascular lesion formation and define a novel pathway of occlusive vascular
remodeling that is mediated by previously unrecognized CDK8-operated metabolic reprogramming for vascular
SMC dedifferentiation, thus shedding light on the study of vascular SMC plasticity as well as the development
of innovative and effective therapeutic approaches for occlusive vascular disease.
血管平滑肌细胞 (SMC) 去分化为合成 SMC,这是许多细胞的标志
闭塞性血管疾病,与代谢转换相关,其特征是有氧运动增加
糖酵解,也促进甲羟戊酸代谢,减少葡萄糖氧化并增加脂肪酸
氧化。然而,环境因素和代谢重编程之间的分子联系仍然存在
不太了解。我们的初步研究表明,细胞周期蛋白依赖性激酶 8 (CDK8) 是
血管 SMC 去分化的代谢控制,内膜增生导致血管闭塞。
机制研究发现 CDK8 控制 SREBP2(甾醇调节元件结合
因子 2) 操作的转录促进蛋白质香叶基香叶基化的甲羟戊酸代谢,其中
驱动血管 SMC 去分化。因此,我们提出了一种新的范例,其中 CDK8 控制
甲羟戊酸代谢促进蛋白质香叶基香叶基化促进血管平滑肌细胞去分化
内膜增生,从而导致闭塞性血管疾病。我们将检验这个假设并
描述 CDK8 操作的血管 SMC 去分化代谢控制的分子机制
2 个具体目标:目标 1 将建立 CDK8 在血管 SMC 去分化为合成细胞中的介导作用
平滑肌细胞促进内膜增生,导致血管闭塞;目标 2 将确定潜在的分子
重点关注 CDK8 操纵甲羟戊酸代谢的分子网络的机制
蛋白质香叶基香叶基化途径,这是血管 SMC 去分化为合成所需的
平滑肌细胞导致内膜增生导致血管闭塞。该提案将提供第一次评估
CDK8介导的闭塞性血管病变形成的机制,并定义了闭塞性血管病变的新途径
由先前未被识别的 CDK8 操作的血管代谢重编程介导的重塑
SMC去分化,为血管SMC可塑性研究及发展提供线索
闭塞性血管疾病的创新和有效的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taixing Cui其他文献
Taixing Cui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taixing Cui', 18)}}的其他基金
Cyclin-dependent kinase (CDK)19-mediated vein graft intimal hyperplasia
细胞周期蛋白依赖性激酶(CDK)19介导的静脉移植内膜增生
- 批准号:
10664327 - 财政年份:2023
- 资助金额:
$ 48.62万 - 项目类别:
Metabolic control of vascular smooth muscle cell plasticity
血管平滑肌细胞可塑性的代谢控制
- 批准号:
10334766 - 财政年份:2021
- 资助金额:
$ 48.62万 - 项目类别:
To explore the potential of UCH-L1 as a novel therapeutic and diagnostic target in heart failure
探索 UCH-L1 作为心力衰竭新治疗和诊断靶点的潜力
- 批准号:
10709559 - 财政年份:2020
- 资助金额:
$ 48.62万 - 项目类别:
To explore the potential of UCH-L1 as a novel therapeutic and diagnostic target in heart failure
探索 UCH-L1 作为心力衰竭新治疗和诊断靶点的潜力
- 批准号:
10467982 - 财政年份:2020
- 资助金额:
$ 48.62万 - 项目类别:
To explore the potential of UCH-L1 as a novel therapeutic and diagnostic target in heart failure
探索 UCH-L1 作为心力衰竭新治疗和诊断靶点的潜力
- 批准号:
10011124 - 财政年份:2020
- 资助金额:
$ 48.62万 - 项目类别:
To explore the potential of UCH-L1 as a novel therapeutic and diagnostic target in heart failure
探索 UCH-L1 作为心力衰竭新治疗和诊断靶点的潜力
- 批准号:
10490344 - 财政年份:2020
- 资助金额:
$ 48.62万 - 项目类别:
The NRF2-p62 Axis in the Cross-Talk between Proteasomal and Lysosomal Degradation
蛋白酶体和溶酶体降解之间相互作用的 NRF2-p62 轴
- 批准号:
9311709 - 财政年份:2017
- 资助金额:
$ 48.62万 - 项目类别:
The NRF2-p62 Axis in the Cross-Talk between Proteasomal and Lysosomal Degradation
蛋白酶体和溶酶体降解之间相互作用的 NRF2-p62 轴
- 批准号:
9891075 - 财政年份:2017
- 资助金额:
$ 48.62万 - 项目类别:
A novel approach for transforming decelluarized vessel grafts into small-diameter arteries
将脱细胞血管移植物转化为小直径动脉的新方法
- 批准号:
9317769 - 财政年份:2017
- 资助金额:
$ 48.62万 - 项目类别:
UBIQUITIN CARBOXYL TERMINAL HYDROLASE L1 (UCH-L1) AND VASCULAR LESION FORMATION
泛素羧基末端水解酶 L1 (UCH-L1) 与血管病变形成
- 批准号:
8167799 - 财政年份:2010
- 资助金额:
$ 48.62万 - 项目类别:
相似海外基金
Deep learning to enable the genetic analysis of aorta
深度学习可实现主动脉的遗传分析
- 批准号:
10807379 - 财政年份:2023
- 资助金额:
$ 48.62万 - 项目类别:
Clinical benefits and mechanism of action of angiotensin-II receptor blocker on Cardiovascular remodeling in patients with repaired coarctation of aorta
血管紧张素II受体阻滞剂对主动脉缩窄修复患者心血管重塑的临床疗效及作用机制
- 批准号:
10734120 - 财政年份:2023
- 资助金额:
$ 48.62万 - 项目类别:
Development of new preventive method for postoperative paraplegia of thoracoabdominal aorta using exosomes
利用外泌体开发胸腹主动脉术后截瘫的新预防方法
- 批准号:
22K08940 - 财政年份:2022
- 资助金额:
$ 48.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Hemodynamic Mechanisms of Heart-Aorta-Brain Coupling with An Integrated Preventive Medicine Education Program for Socioeconomically Disadvantaged Groups
职业:心-主动脉-脑耦合的血流动力学机制以及针对社会经济弱势群体的综合预防医学教育计划
- 批准号:
2145890 - 财政年份:2022
- 资助金额:
$ 48.62万 - 项目类别:
Continuing Grant
Dissecting the role of hemodynamics in ascending aorta aneurysm development in bicuspid aortic valve disease
剖析血流动力学在二叶式主动脉瓣疾病升主动脉瘤发展中的作用
- 批准号:
500274 - 财政年份:2022
- 资助金额:
$ 48.62万 - 项目类别:
Studentship Programs
Smooth muscle cell diversity and thoracic aorta vulnerability
平滑肌细胞多样性和胸主动脉脆弱性
- 批准号:
453372 - 财政年份:2021
- 资助金额:
$ 48.62万 - 项目类别:
Operating Grants
Deep learning to enable the genetic analysis of aorta
深度学习可实现主动脉的遗传分析
- 批准号:
10613402 - 财政年份:2021
- 资助金额:
$ 48.62万 - 项目类别:
Novel flow manipulation technique for correcting blood flow in the aorta
用于纠正主动脉血流的新型血流操纵技术
- 批准号:
566018-2021 - 财政年份:2021
- 资助金额:
$ 48.62万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's














{{item.name}}会员




