An Evaluation of Cloud Computing for Symptom Science Research: Moving Genomics and Machine Learning Analyses of Cancer Chemotherapy-Related Fatigue to the Cloud
云计算对症状科学研究的评估:将癌症化疗相关疲劳的基因组学和机器学习分析转移到云端
基本信息
- 批准号:10827722
- 负责人:
- 金额:$ 24.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-03 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionCharacteristicsChemotherapy-Oncologic ProcedureClinicalCloud ComputingCloud ServiceCommunitiesComputersCost AnalysisCosts and BenefitsCyclophosphamideDataData AnalysesData SetDependenceDiscipline of NursingEducationEducational workshopEngineeringEnvironmentEvaluationExtramural ActivitiesFatigueGenomicsKnowledgeMachine LearningMalignant NeoplasmsMapsMemoryMethylationModelingMolecularNursesNursing ResearchParentsPathway interactionsPatientsPerformancePhenotypePredictive Cancer ModelQuality of lifeRecommendationReportingResearchResearch PersonnelResearch Project GrantsResourcesRunningScientistSeveritiesTimeValidationanalysis pipelineanalytical toolassociated symptomcommon symptomcomputing resourcesdesignexperiencemachine learning pipelineparent grantpredictive modelingpreventrisk prediction modelsymptom sciencetooltraittranscriptome sequencingtranscriptomics
项目摘要
Cancer-related fatigue (CRF) is the most common symptom associated with cancer and its treatments.
Moderate to severe CRF has a negative impact on patients’ ability to tolerate treatments as well as on their
quality of life. The parent grant addressed two of the major knowledge gaps for CRF: the lack of a risk
prediction model and a lack of knowledge of its underlying mechanisms. Given these analyses are data and
resource intensive, they are unavailable to many symptom science researchers. In terms of implementation,
two of the major gaps for symptom science researchers are the lack of access to the necessary computational
resources and a lack of understanding of benefits and costs of a cloud deployment. Symptom science is a
prominent research focus for many extramural and intramural nurse scientists. An evaluation of the analytic
pipelines of the parent grant would identify resource intensive analyses that could be efficiently deployed to the
cloud. Given the potential benefits of cloud services, increased knowledge of the opportunities for using the
cloud for symptom science research and an evaluation of the costs and benefits could guide future research
planning and an increased adoption of cloud computing in the nursing research community. To address these
limitations, we propose to deploy and evaluate the performance of the RNA-seq and machine learning
pipelines to the cloud; develop and release a cloud-supported container for performing expression quantitative
methylation (eQTM) mapping in the cloud; and provide educational opportunities for the nursing research
community describing our experience deploying these analytic pipelines to the cloud and providing guidance to
aid in planning omics and machine learning symptom science research projects.
癌症相关性疲劳(CRF)是与癌症及其治疗相关的最常见症状。
中度至重度CRF对患者耐受治疗的能力以及他们的生活质量有负面影响。
生活质量母公司赠款解决了CRF的两个主要知识差距:缺乏风险
预测模型和缺乏对其潜在机制的了解。鉴于这些分析是数据,
资源密集型,他们是不可用的许多症状科学研究人员。在执行方面,
症状科学研究人员的两个主要差距是缺乏必要的计算能力,
资源以及对云部署的好处和成本缺乏了解。症状科学是一种
突出的研究重点,许多校外和校内护士科学家。分析的评价
母赠款的管道将确定资源密集型分析,可以有效地部署到
cloud.考虑到云服务的潜在好处,
症状科学研究的云计算以及成本和收益的评估可以指导未来的研究
规划和增加采用云计算在护理研究界。解决这些
限制,我们建议部署和评估RNA-seq和机器学习的性能
管道到云;开发和发布云支持的容器,用于执行表达定量
甲基化(eQTM)映射在云中;并为护理研究提供教育机会
社区介绍我们将这些分析管道部署到云的经验,并提供指导,
协助规划组学和机器学习症状科学研究项目。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kord Michael Kober其他文献
Kord Michael Kober的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kord Michael Kober', 18)}}的其他基金
An Investigation of the Molecular Mechanisms for and Prediction of the Severity of Cancer Chemotherapy-Related Fatigue Using a Multi-staged Integrated Omics Approach
使用多阶段综合组学方法研究癌症化疗相关疲劳的分子机制并预测其严重程度
- 批准号:
10657397 - 财政年份:2019
- 资助金额:
$ 24.22万 - 项目类别:
An Investigation of the Molecular Mechanisms for and Prediction of the Severity of Cancer Chemotherapy-Related Fatigue Using a Multi-staged Integrated Omics Approach
使用多阶段综合组学方法研究癌症化疗相关疲劳的分子机制并预测其严重程度
- 批准号:
9762396 - 财政年份:2019
- 资助金额:
$ 24.22万 - 项目类别:
An Investigation of the Molecular Mechanisms for and Prediction of the Severity of Cancer Chemotherapy-Related Fatigue Using a Multi-staged Integrated Omics Approach
使用多阶段综合组学方法研究癌症化疗相关疲劳的分子机制并预测其严重程度
- 批准号:
10516695 - 财政年份:2019
- 资助金额:
$ 24.22万 - 项目类别:
An Investigation of the Molecular Mechanisms for and Prediction of the Severity of Cancer Chemotherapy-Related Fatigue Using a Multi-staged Integrated Omics Approach
使用多阶段综合组学方法研究癌症化疗相关疲劳的分子机制并预测其严重程度
- 批准号:
10204963 - 财政年份:2019
- 资助金额:
$ 24.22万 - 项目类别:
An Investigation of the Molecular Mechanisms for and Prediction of the Severity of Cancer Chemotherapy-Related Fatigue Using a Multi-staged Integrated Omics Approach
使用多阶段综合组学方法研究癌症化疗相关疲劳的分子机制并预测其严重程度
- 批准号:
10430171 - 财政年份:2019
- 资助金额:
$ 24.22万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 24.22万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 24.22万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 24.22万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 24.22万 - 项目类别:
Standard Grant