Machine Learning for Analyzing State Dependent Neuronal Network Dynamics
用于分析状态相关神经网络动力学的机器学习
基本信息
- 批准号:10825302
- 负责人:
- 金额:$ 3.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:Academic TrainingAffectAnesthesia proceduresBehavioralBostonCalciumCellsCommunicationComplexComputational ScienceCoupledDataDevelopmentDimensionsEngineeringEnsureEquilibriumEtiologyEventFacultyFrequenciesGroupingHippocampusImageIndividualInterdisciplinary StudyIsofluraneMachine LearningMathematicsMemoryMentorshipMethodsModelingMusNeuronsNeurosciencesOpticsOutputPatternProblem SolvingResearchScientistSeriesSignal TransductionSomatosensory CortexStimulusStructureSystemTechnical ExpertiseTimeUniversitiesWorkawakecell typecollaborative environmentconditioned feardata reductiondiscountingexcitatory neuronexperimental studyfear memoryindividual responsememory encodingmemory recallmultidimensional dataneuralneural networkoptogeneticsresponsestatisticstwo-photon
项目摘要
Calcium imaging allows recording from 100s of neurons in a single wide field of view, giving rise
to extremely high dimensionality data. Current analysis standards employ descriptive statistics
that summarize neuronal responses into single quantitative metrics, discounting the temporal
dynamics of individual cells and local networks. In contrast, machine learning, especially
dimensionality reduction models, provide more nuanced analysis that considers the temporal
patterns and groupings among cells. While previous work has attempted to reduce the neuronal
activity to very low dimensional manifolds, these methods result in outputs that are difficult to
understand. In this work, we adapt Non-Negative Matrix Factorization (NMF), an easily
interpretable dimensionality reduction method to analyze shifts in neuronal network dynamics
that arise as a function of different experimental contexts. We will apply our framework to study
the neuronal network dynamics of two different contexts: 1) the primary somatosensory cortex
(S1) under increasing concentrations of anesthesia, and 2) the hippocampus during optogenetic
stimulation of memory-encoding ensembles of neurons. We have successfully adapted and
characterized a series of dimensionality reduction methods and have demonstrated NMF is a
superior method to extract underlying structure from calcium recordings. Initial analyses have
extracted ordered, low-dimensional, internal structure not detectable with traditional statistics.
This research will be conducted at Boston University, taking advantage of the numerous
multidisciplinary research centers (Center for Systems Neuroscience, Neurophotonics Center,
Rafik B. Hariri Institute for Computing and Computational Science & Engineering). These
institutes, consisting of highly diverse and renowned groups of faculty, create a highly
collaborative environment for interdisciplinary research, allowing scientists to pursue interesting
questions not directly in their expertise. Further, a combination of academic training,
development of technical skills, analytical problem solving, scientific communication,
professional development, and consistent mentorship will ensure the project has the highest
potential to succeed possible.
钙成像可以在单一的大视野内记录数百个神经元,从而产生
到极高维度的数据。目前的分析标准采用描述性统计
将神经元的反应总结为单一的量化指标,不考虑时间
单个细胞和局部网络的动力学。相比之下,机器学习,尤其是
降维模型,提供考虑时态的更细微差别的分析
细胞间的模式和分组。虽然之前的工作试图减少神经元
活动扩展到非常低维的流形,这些方法产生的输出很难
理解。在这项工作中,我们采用了非负矩阵分解(NMF),这是一种容易的
分析神经网络动力学漂移的可解释降维方法
这是作为不同实验环境的函数而出现的。我们将应用我们的框架来研究
两种不同情境下的神经网络动力学:1)初级躯体感觉皮层
(S1)在增加麻醉浓度的情况下,以及2)在光发生过程中的海马区
刺激记忆编码的神经元集合。我们已经成功地适应和
描述了一系列降维方法,并证明了NMF是一种
从钙记录中提取底层结构的优越方法。初步分析表明
提取出有序的、低维的、传统统计无法检测到的内部结构。
这项研究将在波士顿大学进行,利用众多
多学科研究中心(系统神经科学中心、神经光子学中心、
拉菲克·B·哈里里计算和计算科学与工程研究所)。这些
学院,由高度多样化和知名的教职员工群体组成,创造了一个高度
跨学科研究的协作环境,允许科学家追求有趣的
问题不是直接与他们的专业知识有关的。此外,结合学术培训,
技术技能的发展,分析问题的解决,科学交流,
专业发展和始终如一的指导将确保项目具有最高的
成功的潜力是可能的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel David Carbonero其他文献
Daniel David Carbonero的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 3.98万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 3.98万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 3.98万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 3.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




