Decoding dynamic interplay between signaling and membranes in chemotaxis bymolecular actuators

通过分子致动器解码趋化中信号传导和膜之间的动态相互作用

基本信息

  • 批准号:
    10846921
  • 负责人:
  • 金额:
    $ 5.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-04 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

Parent R35 grant “Decoding dynamic interplay between signaling and membranes in chemotaxis by molecular actuators” Proposal Summary Chemotaxis occurs during a number of key physiological events including angiogenesis, embryonic development and wound healing. It also contributes to disease progression in pathological conditions such as cancer metastasis and arthritis. The goal of the current proposal is to reveal how biochemical reactions and physical characteristics, such as membrane curvature, deformation, and assembly phase, interact with one another in achieving dynamic, accurate yet highly efficient cell migration. Chemotaxis has been understood mainly in the perspective of signal transduction, while if and how physical properties of membranes play a role, and how they interact with signal transduction remain largely unknown. By newly developing and implementing a series of molecular actuators that can directly probe membrane properties with high spatio-temporal precision inside lively migrating cells, we will reveal an interplay between signal transduction and membrane mechanics. What molecular mechanisms generate local membrane curvatures developing into filopodia and lamellipodia? In sensing chemoattractants, cells polarize by undergoing asymmetric membrane deformation consisting of filopodia and lamellipodia at the front, and membrane retraction at the rear. We recently found that curvature-sensitive proteins are a missing link between actin cytoskeleton and membranes. The result made us hypothesize that actin machinery and curvature sensing and remodeling proteins, when properly modulated in a feedback loop, are sufficient to produce desired types of membrane deformations such as lamellipodia and filopodia. We will thus identify a particular combination of Rho GTPases, actin regulators, and BAR proteins, and the molecular logic thereof, that are responsible for formation of filopodia and lamellipodia. How do signaling components in migrating cells respond to membrane deformation? Migrating cells exhibit dynamic morphological changes at plasma membranes and nuclear envelopes “as a consequence” of cytoskeletal rearrangement regulated by signal components. To explore a possibility that membrane deformation talks back to cytoskeletal and signal components, we will deploy molecular actuators that can directly deform membranes. We will then quantify subsequently emerging activity of signaling components such as receptor tyrosine kinases, PI3K, and small GTPases, as well as transcription factors such as YAP and Elk. How does the phase-separated cytoskeletal biomolecular condensate play a role in membrane deformation? Actin networks can undergo formation of biomolecular condensates at the plasma membrane due to weak multivalent interactions among actin regulators. To examine the physiological importance of such phase separation events, we will adapt molecular techniques to assemble or disassemble the condensates. These operations will uniquely achieve gain- or loss-of function manipulations without altering an amount of the molecular constituents; what is altered is their physical assembly status. We will characterize cell migration phenotypes before and after deploying phase manipulations.
家长 R35 补助金 “通过分子解码趋化中信号传导和膜之间的动态相互作用 执行器” 提案摘要 趋化性发生在许多关键的生理事件中,包括血管生成、 胚胎发育和伤口愈合。它还有助于疾病进展 病理状况,例如癌症转移和关节炎。当前提案的目标 是揭示生化反应和物理特性(例如膜曲率)如何 变形和装配阶段相互作用,实现动态、精确且 高效的细胞迁移。主要从信号的角度来理解趋化性 转导,膜的物理特性是否发挥作用以及如何发挥作用,以及它们如何相互作用 与信号转导的关系仍然很大程度上未知。通过新开发和实施一系列 可以直接探测高时空膜特性的分子致动器 精确的活动迁移细胞内,我们将揭示信号转导和 膜力学。 什么分子机制产生局部膜曲率发展成 丝状伪足和板状伪足?在感应化学引诱物时,细胞通过经历极化 不对称膜变形由前面的丝状伪足和片状伪足组成,以及 膜在后部收缩。我们最近发现曲率敏感蛋白缺失 肌动蛋白细胞骨架和细胞膜之间的联系。结果使我们假设肌动蛋白 机械和曲率传感和重塑蛋白质,当在适当的调制 反馈回路,足以产生所需类型的膜变形,例如 片状伪足和丝状伪足。因此,我们将鉴定 Rho GTPases、肌动蛋白的特定组合 调节剂和 BAR 蛋白及其分子逻辑,负责形成 丝状伪足和板状伪足。 迁移细胞中的信号成分如何响应膜变形? 迁移细胞在质膜和核上表现出动态形态变化 包膜是信号成分调节的细胞骨架重排的“结果”。 探索膜变形与细胞骨架和信号反应的可能性 组件,我们将部署可以直接使膜变形的分子致动器。我们将 然后量化随后出现的信号成分(例如受体酪氨酸)的活性 激酶、PI3K 和小 GTP 酶,以及 YAP 和 Elk 等转录因子。 相分离的细胞骨架生物分子凝聚物如何发挥作用 膜变形?肌动蛋白网络可以在以下位置形成生物分子缩合物 由于肌动蛋白调节剂之间的多价相互作用较弱,质膜受到影响。检查 由于此类相分离事件的生理重要性,我们将采用分子技术 组装或拆卸冷凝物。这些操作将独特地实现增益或 在不改变分子成分数量的情况下进行功能丧失操作;什么是 改变的是它们的物理组装状态。我们将在之前描述细胞迁移表型 以及部署相位操作之后。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Takanari Inoue其他文献

Takanari Inoue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Takanari Inoue', 18)}}的其他基金

Decoding dynamic interplay between signaling and membranes in chemotaxis by molecular actuators
通过分子致动器解码趋化中信号传导和膜之间的动态相互作用
  • 批准号:
    10623376
  • 财政年份:
    2023
  • 资助金额:
    $ 5.06万
  • 项目类别:
ActuAtor, a molecular tool for generating force in living cells
ActuAtor,一种在活细胞中产生力的分子工具
  • 批准号:
    10473892
  • 财政年份:
    2020
  • 资助金额:
    $ 5.06万
  • 项目类别:
ActuAtor, a molecular tool for generating force in living cells
ActuAtor,一种在活细胞中产生力的分子工具
  • 批准号:
    10246255
  • 财政年份:
    2020
  • 资助金额:
    $ 5.06万
  • 项目类别:
Feedback and Crosstalk in Eukaryotic Chemotaxis
真核趋化中的反馈和串扰
  • 批准号:
    9767252
  • 财政年份:
    2018
  • 资助金额:
    $ 5.06万
  • 项目类别:
Feedback and Crosstalk in Eukaryotic Chemotaxis
真核趋化中的反馈和串扰
  • 批准号:
    10207662
  • 财政年份:
    2018
  • 资助金额:
    $ 5.06万
  • 项目类别:
Feedback and Crosstalk in Eukaryotic Chemotaxis
真核趋化中的反馈和串扰
  • 批准号:
    9923130
  • 财政年份:
    2018
  • 资助金额:
    $ 5.06万
  • 项目类别:
Flow sensation by kidney cells
肾细胞的血流感觉
  • 批准号:
    9043873
  • 财政年份:
    2014
  • 资助金额:
    $ 5.06万
  • 项目类别:
Feedback and Crosstalk in Eukaryotic Chemotaxis- Administrative Supplement
真核趋化性中的反馈和串扰-行政补充
  • 批准号:
    8703909
  • 财政年份:
    2010
  • 资助金额:
    $ 5.06万
  • 项目类别:
Feedback and Crosstalk in Eukaryotic Chemotaxis
真核趋化中的反馈和串扰
  • 批准号:
    8109302
  • 财政年份:
    2010
  • 资助金额:
    $ 5.06万
  • 项目类别:
Feedback and Crosstalk in Eukaryotic Chemotaxis
真核趋化中的反馈和串扰
  • 批准号:
    8477210
  • 财政年份:
    2010
  • 资助金额:
    $ 5.06万
  • 项目类别:

相似国自然基金

Autoimmune diseases therapies: variations on the microbiome in rheumatoid arthritis
  • 批准号:
    31171277
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Tissue tropism of PD-1 therapy in ulcerative colitis and rheumatoid arthritis
PD-1治疗溃疡性结肠炎和类风湿性关节炎的组织向性
  • 批准号:
    MR/Y009681/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Fellowship
Do autoantibodies to aberrantly glycosylated MUC1 drive extra-articular rheumatoid arthritis, and can GSK assets prevent driver antigen formation?
针对异常糖基化 MUC1 的自身抗体是否会导致关节外类风湿性关节炎,GSK 资产能否阻止驱动抗原形成?
  • 批准号:
    MR/Y022947/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Research Grant
Preclinical development of an extracellular vesicle biotherapeutic for juvenile idiopathic arthritis
幼年特发性关节炎细胞外囊泡生物治疗药物的临床前开发
  • 批准号:
    10068495
  • 财政年份:
    2024
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Collaborative R&D
The delivery of miR-9 and RasGRP4 siRNA via high selectivity bispecific antibody conjugated lactosome: Targeting therapy for rheumatoid arthritis (RA) active synovial macrophage and osteoclast
通过高选择性双特异性抗体缀合乳糖体递送 miR-9 和 RasGRP4 siRNA:类风湿性关节炎 (RA) 活性滑膜巨噬细胞和破骨细胞的靶向治疗
  • 批准号:
    24K19237
  • 财政年份:
    2024
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploring the inflammatory mediators degraded by MMP-2 in MMP-2-deficient mice with knee arthritis through a novel TMT-TAILS quantitative proteomics
通过新型 TMT-TAILS 定量蛋白质组学探索 MMP-2 缺陷型膝关节炎小鼠中 MMP-2 降解的炎症介质
  • 批准号:
    24K19850
  • 财政年份:
    2024
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of an adaptive platform trial to prevent Rheumatoid Arthritis in partnership with First Nations People.
与原住民合作开发预防类风湿关节炎的适应性平台试验。
  • 批准号:
    491810
  • 财政年份:
    2023
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Operating Grants
The role of diet, as mediated by the gut microbiome, on childhood arthritis disease activity: a feasibility intervention study.
肠道微生物组介导的饮食对儿童关节炎疾病活动的作用:一项可行性干预研究。
  • 批准号:
    489316
  • 财政年份:
    2023
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Operating Grants
Investigation of hypoxia-inducible factor-1 (HIF-1) as a novel therapeutic target for juvenile idiopathic arthritis.
研究缺氧诱导因子-1 (HIF-1) 作为幼年特发性关节炎的新治疗靶点。
  • 批准号:
    23K14987
  • 财政年份:
    2023
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
DEMORA: DEep spatial characterization of synovial MacrOphages in Rheumatoid Arthritis
DEMORA:类风湿性关节炎滑膜巨噬细胞的深度空间特征
  • 批准号:
    EP/Y027760/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5.06万
  • 项目类别:
    Fellowship
The roles and mechanisms of inflammation resolution in the development of Rheumatoid Arthritis
炎症消退在类风湿关节炎发展中的作用和机制
  • 批准号:
    10733789
  • 财政年份:
    2023
  • 资助金额:
    $ 5.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了