Decoding dynamic interplay between signaling and membranes in chemotaxis bymolecular actuators
通过分子致动器解码趋化中信号传导和膜之间的动态相互作用
基本信息
- 批准号:10846921
- 负责人:
- 金额:$ 5.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-04 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsArthritisBackBiochemical ReactionBiological ProcessCell membraneCharacteristicsChemotactic FactorsChemotaxisCytoskeletonDevelopmentDiseaseDisease ProgressionEmbryonic DevelopmentEventExhibitsFeedbackFilopodiaGoalsGrantImpairmentLinkLogicMalignant NeoplasmsMechanicsMembraneMolecularMonomeric GTP-Binding ProteinsMorphologyNatural regenerationNeoplasm MetastasisNuclear EnvelopePIK3CG geneParentsPathologicPhasePhenotypePhysical condensationPhysiologicalPropertyProteinsReceptor Protein-Tyrosine KinasesSeriesSignal TransductionTechniquesTissuesTractionangiogenesiscell motilityloss of functionmolecular actuatoroperationphysical propertypolarized cellrho GTP-Binding Proteinsspatiotemporaltooltranscription factorwound healing
项目摘要
Parent R35 grant
“Decoding dynamic interplay between signaling and membranes in chemotaxis by molecular
actuators”
Proposal Summary
Chemotaxis occurs during a number of key physiological events including angiogenesis,
embryonic development and wound healing. It also contributes to disease progression in
pathological conditions such as cancer metastasis and arthritis. The goal of the current proposal
is to reveal how biochemical reactions and physical characteristics, such as membrane curvature,
deformation, and assembly phase, interact with one another in achieving dynamic, accurate yet
highly efficient cell migration. Chemotaxis has been understood mainly in the perspective of signal
transduction, while if and how physical properties of membranes play a role, and how they interact
with signal transduction remain largely unknown. By newly developing and implementing a series
of molecular actuators that can directly probe membrane properties with high spatio-temporal
precision inside lively migrating cells, we will reveal an interplay between signal transduction and
membrane mechanics.
What molecular mechanisms generate local membrane curvatures developing into
filopodia and lamellipodia? In sensing chemoattractants, cells polarize by undergoing
asymmetric membrane deformation consisting of filopodia and lamellipodia at the front, and
membrane retraction at the rear. We recently found that curvature-sensitive proteins are a missing
link between actin cytoskeleton and membranes. The result made us hypothesize that actin
machinery and curvature sensing and remodeling proteins, when properly modulated in a
feedback loop, are sufficient to produce desired types of membrane deformations such as
lamellipodia and filopodia. We will thus identify a particular combination of Rho GTPases, actin
regulators, and BAR proteins, and the molecular logic thereof, that are responsible for formation
of filopodia and lamellipodia.
How do signaling components in migrating cells respond to membrane deformation?
Migrating cells exhibit dynamic morphological changes at plasma membranes and nuclear
envelopes “as a consequence” of cytoskeletal rearrangement regulated by signal components.
To explore a possibility that membrane deformation talks back to cytoskeletal and signal
components, we will deploy molecular actuators that can directly deform membranes. We will
then quantify subsequently emerging activity of signaling components such as receptor tyrosine
kinases, PI3K, and small GTPases, as well as transcription factors such as YAP and Elk.
How does the phase-separated cytoskeletal biomolecular condensate play a role in
membrane deformation? Actin networks can undergo formation of biomolecular condensates at
the plasma membrane due to weak multivalent interactions among actin regulators. To examine
the physiological importance of such phase separation events, we will adapt molecular techniques
to assemble or disassemble the condensates. These operations will uniquely achieve gain- or
loss-of function manipulations without altering an amount of the molecular constituents; what is
altered is their physical assembly status. We will characterize cell migration phenotypes before
and after deploying phase manipulations.
父母R35补助金
“通过分子生物学方法解码信号传导和趋化性膜之间的动态相互作用
执行器”
提案摘要
趋化性发生在许多关键生理事件中,包括血管生成,
胚胎发育和伤口愈合。它也有助于疾病进展,
病理状况如癌症转移和关节炎。目前提案的目标是
是揭示生物化学反应和物理特性,如膜曲率,
变形和装配阶段,相互作用,实现动态,准确,但
高效的细胞迁移。趋化性主要是从信号的角度来理解的
转导,而膜的物理性质是否以及如何发挥作用,以及它们如何相互作用
与信号转导的关系仍不清楚。通过新开发和实施一系列
的分子执行器,可以直接探测膜的性能与高时空
在活泼的迁移细胞内的精确性,我们将揭示信号转导和
膜力学
是什么分子机制导致局部膜弯曲发展成
丝状伪足和片状伪足在感受化学引诱物时,细胞通过经历
不对称的膜变形,由前部的丝状伪足和片状伪足组成,
后部的膜收缩。我们最近发现,曲率敏感蛋白是一种缺失的,
连接肌动蛋白细胞骨架和细胞膜。这一结果使我们假设肌动蛋白
机械和曲率传感和重塑蛋白质,当在一个适当的调制,
反馈回路足以产生所需类型的膜变形,
板状伪足和丝状伪足。因此,我们将鉴定Rho GTP酶、肌动蛋白
调节子和BAR蛋白及其分子逻辑,它们负责形成
丝状伪足和板状伪足。
迁移细胞中的信号成分如何响应膜变形?
迁移细胞在质膜和核上表现出动态的形态学变化
包膜的“结果”的细胞骨架重排调节的信号成分。
探讨细胞膜变形与细胞骨架和信号传导的可能性
组件,我们将部署分子执行器,可以直接变形膜。我们将
然后定量随后出现的信号传导成分的活性,
激酶、PI 3 K和小GTP酶,以及转录因子如雅普和Elk。
相分离的细胞骨架生物分子凝聚物如何在
膜变形?肌动蛋白网络可以经历生物分子缩合物的形成,
由于肌动蛋白调节剂之间的弱多价相互作用,质膜。审查
这种相分离事件的生理重要性,我们将采用分子技术
来组装或拆卸冷凝物。这些行动将独特地实现收益-或
不改变分子成分量的功能丧失操作;
改变的是它们的物理组装状态。我们将描述细胞迁移表型,
以及部署相位操纵之后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Takanari Inoue其他文献
Takanari Inoue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Takanari Inoue', 18)}}的其他基金
Decoding dynamic interplay between signaling and membranes in chemotaxis by molecular actuators
通过分子致动器解码趋化中信号传导和膜之间的动态相互作用
- 批准号:
10623376 - 财政年份:2023
- 资助金额:
$ 5.06万 - 项目类别:
ActuAtor, a molecular tool for generating force in living cells
ActuAtor,一种在活细胞中产生力的分子工具
- 批准号:
10473892 - 财政年份:2020
- 资助金额:
$ 5.06万 - 项目类别:
ActuAtor, a molecular tool for generating force in living cells
ActuAtor,一种在活细胞中产生力的分子工具
- 批准号:
10246255 - 财政年份:2020
- 资助金额:
$ 5.06万 - 项目类别:
Feedback and Crosstalk in Eukaryotic Chemotaxis- Administrative Supplement
真核趋化性中的反馈和串扰-行政补充
- 批准号:
8703909 - 财政年份:2010
- 资助金额:
$ 5.06万 - 项目类别:
相似国自然基金
Autoimmune diseases therapies: variations on the microbiome in rheumatoid arthritis
- 批准号:31171277
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Tissue tropism of PD-1 therapy in ulcerative colitis and rheumatoid arthritis
PD-1治疗溃疡性结肠炎和类风湿性关节炎的组织向性
- 批准号:
MR/Y009681/1 - 财政年份:2024
- 资助金额:
$ 5.06万 - 项目类别:
Fellowship
Do autoantibodies to aberrantly glycosylated MUC1 drive extra-articular rheumatoid arthritis, and can GSK assets prevent driver antigen formation?
针对异常糖基化 MUC1 的自身抗体是否会导致关节外类风湿性关节炎,GSK 资产能否阻止驱动抗原形成?
- 批准号:
MR/Y022947/1 - 财政年份:2024
- 资助金额:
$ 5.06万 - 项目类别:
Research Grant
Preclinical development of an extracellular vesicle biotherapeutic for juvenile idiopathic arthritis
幼年特发性关节炎细胞外囊泡生物治疗药物的临床前开发
- 批准号:
10068495 - 财政年份:2024
- 资助金额:
$ 5.06万 - 项目类别:
Collaborative R&D
The delivery of miR-9 and RasGRP4 siRNA via high selectivity bispecific antibody conjugated lactosome: Targeting therapy for rheumatoid arthritis (RA) active synovial macrophage and osteoclast
通过高选择性双特异性抗体缀合乳糖体递送 miR-9 和 RasGRP4 siRNA:类风湿性关节炎 (RA) 活性滑膜巨噬细胞和破骨细胞的靶向治疗
- 批准号:
24K19237 - 财政年份:2024
- 资助金额:
$ 5.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploring the inflammatory mediators degraded by MMP-2 in MMP-2-deficient mice with knee arthritis through a novel TMT-TAILS quantitative proteomics
通过新型 TMT-TAILS 定量蛋白质组学探索 MMP-2 缺陷型膝关节炎小鼠中 MMP-2 降解的炎症介质
- 批准号:
24K19850 - 财政年份:2024
- 资助金额:
$ 5.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an adaptive platform trial to prevent Rheumatoid Arthritis in partnership with First Nations People.
与原住民合作开发预防类风湿关节炎的适应性平台试验。
- 批准号:
491810 - 财政年份:2023
- 资助金额:
$ 5.06万 - 项目类别:
Operating Grants
The role of diet, as mediated by the gut microbiome, on childhood arthritis disease activity: a feasibility intervention study.
肠道微生物组介导的饮食对儿童关节炎疾病活动的作用:一项可行性干预研究。
- 批准号:
489316 - 财政年份:2023
- 资助金额:
$ 5.06万 - 项目类别:
Operating Grants
DEMORA: DEep spatial characterization of synovial MacrOphages in Rheumatoid Arthritis
DEMORA:类风湿性关节炎滑膜巨噬细胞的深度空间特征
- 批准号:
EP/Y027760/1 - 财政年份:2023
- 资助金额:
$ 5.06万 - 项目类别:
Fellowship
Investigation of hypoxia-inducible factor-1 (HIF-1) as a novel therapeutic target for juvenile idiopathic arthritis.
研究缺氧诱导因子-1 (HIF-1) 作为幼年特发性关节炎的新治疗靶点。
- 批准号:
23K14987 - 财政年份:2023
- 资助金额:
$ 5.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel first-in-class Therapeutics for Rheumatoid Arthritis
类风湿关节炎的一流新疗法
- 批准号:
10696749 - 财政年份:2023
- 资助金额:
$ 5.06万 - 项目类别:














{{item.name}}会员




