Decoding dynamic interplay between signaling and membranes in chemotaxis by molecular actuators
通过分子致动器解码趋化中信号传导和膜之间的动态相互作用
基本信息
- 批准号:10623376
- 负责人:
- 金额:$ 65.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-04 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsArthritisBackBiochemical ReactionBiological ProcessCell membraneCharacteristicsChemotactic FactorsChemotaxisCytoskeletonDevelopmentDiseaseDisease ProgressionEmbryonic DevelopmentEventExhibitsFeedbackFilopodiaGoalsImpairmentLinkLogicMalignant NeoplasmsMechanicsMembraneMolecularMonomeric GTP-Binding ProteinsMorphologyNatural regenerationNeoplasm MetastasisNuclear EnvelopePIK3CG genePathologicPhasePhenotypePhysical condensationPhysiologicalPropertyProteinsPublic HealthReceptor Protein-Tyrosine KinasesSeriesSignal TransductionTechniquesTissuesTractionangiogenesiscell motilityloss of functionmolecular actuatoroperationphysical propertypolarized cellrho GTP-Binding Proteinsspatiotemporaltooltranscription factorwound healing
项目摘要
Chemotaxis occurs during a number of key physiological events including angiogenesis, embryonic
development and wound healing. It also contributes to disease progression in pathological conditions such as
cancer metastasis and arthritis. The goal of the current proposal is to reveal how biochemical reactions and
physical characteristics, such as membrane curvature, deformation, and assembly phase, interact with one
another in achieving dynamic, accurate yet highly efficient cell migration. Chemotaxis has been understood
mainly in the perspective of signal transduction, while if and how physical properties of membranes play a role,
and how they interact with signal transduction remain largely unknown. By newly developing and implementing
a series of molecular actuators that can directly probe membrane properties with high spatio-temporal precision
inside lively migrating cells, we will reveal an interplay between signal transduction and membrane mechanics.
What molecular mechanisms generate local membrane curvatures developing into filopodia and
lamellipodia? In sensing chemoattractants, cells polarize by undergoing asymmetric membrane deformation
consisting of filopodia and lamellipodia at the front, and membrane retraction at the rear. We recently found that
curvature-sensitive proteins are a missing link between actin cytoskeleton and membranes. The result made us
hypothesize that actin machinery and curvature sensing and remodeling proteins, when properly modulated in a
feedback loop, are sufficient to produce desired types of membrane deformations such as lamellipodia and
filopodia. We will thus identify a particular combination of Rho GTPases, actin regulators, and BAR proteins, and
the molecular logic thereof, that are responsible for formation of filopodia and lamellipodia.
How do signaling components in migrating cells respond to membrane deformation? Migrating cells
exhibit dynamic morphological changes at plasma membranes and nuclear envelopes “as a consequence” of
cytoskeletal rearrangement regulated by signal components. To explore a possibility that membrane deformation
talks back to cytoskeletal and signal components, we will deploy molecular actuators that can directly deform
membranes. We will then quantify subsequently emerging activity of signaling components such as receptor
tyrosine kinases, PI3K, and small GTPases, as well as transcription factors such as YAP and Elk.
How does the phase-separated cytoskeletal biomolecular condensate play a role in membrane
deformation? Actin networks can undergo formation of biomolecular condensates at the plasma membrane due
to weak multivalent interactions among actin regulators. To examine the physiological importance of such phase
separation events, we will adapt molecular techniques to assemble or disassemble the condensates. These
operations will uniquely achieve gain- or loss-of function manipulations without altering an amount of the
molecular constituents; what is altered is their physical assembly status. We will characterize cell migration
phenotypes before and after deploying phase manipulations.
趋化性发生在许多关键的生理事件中发生,包括血管生成,胚胎
发育和伤口愈合。它还有助于病理状况(例如
癌症转移和关节炎。当前建议的目的是揭示生化反应和
物理特征,例如膜曲率,变形和组装阶段,与一个相互作用
另一个在实现动态,准确但高效的细胞迁移方面。趋化性已被理解
主要是从信号转导的角度来看,而膜的物理特性以及如何发挥作用,
它们如何与信号转导相互作用仍然很大未知。通过新开发和实施
一系列可以直接探测具有高时空精度的膜特性的分子致动器
在活泼的迁移细胞内,我们将揭示信号转导和膜力学之间的相互作用。
哪种分子机制会产生局部膜曲率发展到丝状疾病和
lamellipodia?在感官化学吸引剂中,细胞通过不对称膜变形而极化
由前面的丝状和薄片组成,后部由膜回缩。我们最近发现
曲率敏感的蛋白是肌动蛋白细胞骨架和膜之间缺失的联系。结果使我们
假设肌动蛋白的机械和曲率感测和重塑蛋白在适当调节
反馈循环足以产生所需类型的膜变形,例如薄片和
丝状。因此,我们将确定Rho GTPases,肌动蛋白调节剂和棒蛋白的特定组合以及
其分子逻辑是造成丝状和层状脂蛋白的形成的。
迁移细胞中的信号传导成分如何响应膜变形?迁移细胞
在质膜和核信封上表现出动态的形态变化。
由信号成分调节的细胞骨架重排。探索膜变形的可能性
回到细胞骨架和信号成分,我们将部署可以直接变形的分子执行器
膜。然后,我们将随后量化信号分量(例如接收器)的新兴活性
酪氨酸激酶,PI3K和小GTPase以及Yap和Elk等转录因子。
相分离的细胞骨架生物分子冷凝物如何在膜中起作用
形变?肌动蛋白网络可以在质膜上进行生物分子冷凝物的形成
肌动蛋白调节剂之间的多价相互作用。检查这种阶段的身体重要性
分离事件,我们将适应分子技术来组装或拆卸冷凝物。这些
操作将独特地实现功能丧失操作,而无需更改数量
分子宪法;改变的是他们的物理装配状态。我们将表征细胞迁移
部署阶段操作前后的表型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Takanari Inoue其他文献
Takanari Inoue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Takanari Inoue', 18)}}的其他基金
Decoding dynamic interplay between signaling and membranes in chemotaxis bymolecular actuators
通过分子致动器解码趋化中信号传导和膜之间的动态相互作用
- 批准号:
10846921 - 财政年份:2023
- 资助金额:
$ 65.99万 - 项目类别:
ActuAtor, a molecular tool for generating force in living cells
ActuAtor,一种在活细胞中产生力的分子工具
- 批准号:
10473892 - 财政年份:2020
- 资助金额:
$ 65.99万 - 项目类别:
ActuAtor, a molecular tool for generating force in living cells
ActuAtor,一种在活细胞中产生力的分子工具
- 批准号:
10246255 - 财政年份:2020
- 资助金额:
$ 65.99万 - 项目类别:
Feedback and Crosstalk in Eukaryotic Chemotaxis- Administrative Supplement
真核趋化性中的反馈和串扰-行政补充
- 批准号:
8703909 - 财政年份:2010
- 资助金额:
$ 65.99万 - 项目类别:
相似国自然基金
MAOA通过抑制ASC选择性自噬降解加剧骨关节炎进程及其机制研究
- 批准号:82302731
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
壮医热敏探穴针刺疗法调控miR-9-5p介导PI3K/Akt/mTOR通路对类风湿关节炎大鼠FLS自噬的作用机制研究
- 批准号:82360981
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
效应记忆T细胞上CD147与LILRA2受体作用调控巨噬细胞活化介导类风湿关节炎的机制研究
- 批准号:82302032
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“肾藏精主骨生髓”探究TGF-β/BMP/Smads通路介导软骨下骨骨重塑调控骨关节炎
- 批准号:82360946
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
新型钙捕获特性MSN-EGTA纳米粒子靶向巨噬细胞线粒体调控MAM治疗膝骨关节炎的机制研究
- 批准号:82302773
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Decoding dynamic interplay between signaling and membranes in chemotaxis bymolecular actuators
通过分子致动器解码趋化中信号传导和膜之间的动态相互作用
- 批准号:
10846921 - 财政年份:2023
- 资助金额:
$ 65.99万 - 项目类别:
Cytoskeletal functions in cell aging and disease
细胞衰老和疾病中的细胞骨架功能
- 批准号:
10400494 - 财政年份:2016
- 资助金额:
$ 65.99万 - 项目类别:
Chemokine Receptor Studies: Defining the Dynamics of the Chemosynapse
趋化因子受体研究:定义趋化突触的动力学
- 批准号:
7915941 - 财政年份:2009
- 资助金额:
$ 65.99万 - 项目类别: