Real-time mapping and adaptive testing for neural population hypotheses

神经群体假设的实时映射和自适应测试

基本信息

  • 批准号:
    10838394
  • 负责人:
  • 金额:
    $ 20.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2025-09-14
  • 项目状态:
    未结题

项目摘要

ABSTRACT Recent advances in neural recording technologies have made it possible to study increasingly large and di- verse subsets of neurons, producing a growing interest in the collective computational properties of neural pop- ulations. Ideally, causally testing these population hypotheses requires timing and selecting experimental ma- nipulations based on the current state of neural dynamics, but technical limitations have rendered this difficult in practice. However, recent work on real-time preprocessing and modeling of neural data has demonstrated that up-to-the minute estimates of neural population dynamics are indeed possible, opening the door to adap-tive experiments in which the design of the task changes based on incoming data. The goal of this proposal is to disseminate these advances to the widest possible audience of systems neuroscientists by: 1) Designing and validating new methods for mapping neural states and behavior online. 2) Developing algorithms for optimally timing and selecting experimental manipulations based on these instantaneous neural and behavioral states. 3) Making improv, our platform for adaptive experiments, easier to install, use, and configure for diverse model organisms and hardware setups. By allowing researchers to test ideas online, such tools will facilitate rapid “drill-down” from the whole brain to the local circuit levels, maximizing statistical efficiency in limited experi- mental time and providing stronger causal inferences for neural population hypotheses, with broad implications for systems neuroscience. 1
抽象的 神经记录技术的最新进展使得研究越来越大和越来越分散成为可能。 神经元的子集,使人们对神经元的集体计算特性越来越感兴趣 的规定。理想情况下,因果检验这些群体假设需要时机和选择实验材料 基于神经动力学当前状态的操纵,但技术限制使得这变得困难 实践。然而,最近关于神经数据实时预处理和建模的工作表明: 对神经群体动态的最新估计确实是可能的,这为自适应性打开了大门 任务设计根据传入数据而变化的实验。该提案的目标是 通过以下方式向最广泛的系统神经科学家传播这些进展:1)设计和 验证在线映射神经状态和行为的新方法。 2)开发优化算法 根据这些瞬时神经和行为状态来计时和选择实验操作。 3) 让我们的自适应实验平台“improv”更易于安装、使用和配置以适应不同的模型 有机体和硬件设置。通过允许研究人员在线测试想法,此类工具将促进快速 从整个大脑“深入”到局部回路水平,在有限的经验中最大限度地提高统计效率 心理时间并为神经群体假设提供更强的因果推论,具有广泛的影响 用于系统神经科学。 1

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Pearson其他文献

John Pearson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Pearson', 18)}}的其他基金

Real-time mapping and adaptive testing for neural population hypotheses
神经群体假设的实时映射和自适应测试
  • 批准号:
    10838393
  • 财政年份:
    2022
  • 资助金额:
    $ 20.11万
  • 项目类别:
Mechanisms of Parkinsonian Impulsivity in Human Subthalamic Nucleus
人丘脑底核帕金森病冲动的机制
  • 批准号:
    8702698
  • 财政年份:
    2014
  • 资助金额:
    $ 20.11万
  • 项目类别:
Nonparametric Bayes Methods for Big Data in Neuroscience
神经科学大数据的非参数贝叶斯方法
  • 批准号:
    9099840
  • 财政年份:
    2014
  • 资助金额:
    $ 20.11万
  • 项目类别:
Nonparametric Bayes Methods for Big Data in Neuroscience
神经科学大数据的非参数贝叶斯方法
  • 批准号:
    9310000
  • 财政年份:
    2014
  • 资助金额:
    $ 20.11万
  • 项目类别:
Nonparametric Bayes Methods for Big Data in Neuroscience
神经科学大数据的非参数贝叶斯方法
  • 批准号:
    8830000
  • 财政年份:
    2014
  • 资助金额:
    $ 20.11万
  • 项目类别:
Nonparametric Bayes Methods for Big Data in Neuroscience
神经科学大数据的非参数贝叶斯方法
  • 批准号:
    8935820
  • 财政年份:
    2014
  • 资助金额:
    $ 20.11万
  • 项目类别:

相似海外基金

CAREER: Next-generation of Wirelessly Powered Implantable Neuromodulation and Electrophysiological Recording System for Long-term Behavior Study of Freely-Moving Animals
职业:下一代无线供电植入式神经调节和电生理记录系统,用于自由移动动物的长期行为研究
  • 批准号:
    2309413
  • 财政年份:
    2022
  • 资助金额:
    $ 20.11万
  • 项目类别:
    Continuing Grant
Developing remote monitoring system of aquatic animals' behavior and ecology to reform ecosystem conservation
开发水生动物行为和生态远程监测系统改革生态系统保护
  • 批准号:
    22K18432
  • 财政年份:
    2022
  • 资助金额:
    $ 20.11万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
OCE-PRF: Cliff Hangers: Investigating Effects of a Submarine Canyon on the Distribution and Behavior of Midwater Animals and their Predators
OCE-PRF:悬崖吊架:调查海底峡谷对中层水域动物及其捕食者的分布和行为的影响
  • 批准号:
    2126537
  • 财政年份:
    2021
  • 资助金额:
    $ 20.11万
  • 项目类别:
    Standard Grant
CAREER: Next-generation of Wirelessly Powered Implantable Neuromodulation and Electrophysiological Recording System for Long-term Behavior Study of Freely-Moving Animals
职业:下一代无线供电植入式神经调节和电生理记录系统,用于自由移动动物的长期行为研究
  • 批准号:
    1943990
  • 财政年份:
    2020
  • 资助金额:
    $ 20.11万
  • 项目类别:
    Continuing Grant
Study on factors that increase or decrease the vigilance behavior of wild animals: the effect of species differences and visual stimuli
野生动物警觉行为增减因素研究:物种差异和视觉刺激的影响
  • 批准号:
    20K06353
  • 财政年份:
    2020
  • 资助金额:
    $ 20.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neural circuit underlying flexible behavior in animals
动物灵活行为的神经回路
  • 批准号:
    19H01769
  • 财政年份:
    2019
  • 资助金额:
    $ 20.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of adaptive mechanisms in chemical localization behavior of animals by using novel devices to intervene in sensory and motor functions
使用新型装置干预感觉和运动功能来分析动物化学定位行为的适应性机制
  • 批准号:
    19H02104
  • 财政年份:
    2019
  • 资助金额:
    $ 20.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Life Cost Strategy for Wild Animals Using Wearable Behavior Recording Devices and Telomere Measurement
使用可穿戴行为记录设备和端粒测量的野生动物生命成本策略
  • 批准号:
    18K14788
  • 财政年份:
    2018
  • 资助金额:
    $ 20.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Modeling and application of energy-efficient behavior in calling animals
动物呼叫节能行为建模及应用
  • 批准号:
    18K18005
  • 财政年份:
    2018
  • 资助金额:
    $ 20.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Cooperative behavior of non-human animals focusing on reward sharing -comparison between rodents and birds-
注重奖励分享的非人类动物的合作行为-啮齿类动物与鸟类的比较-
  • 批准号:
    18K12020
  • 财政年份:
    2018
  • 资助金额:
    $ 20.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了