Implementing best practices in software design for Network Level Analysis
实施网络级分析软件设计的最佳实践
基本信息
- 批准号:10839638
- 负责人:
- 金额:$ 23.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-08 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAdministrative SupplementAdolescentAdoptionAgeAlgorithmsArchitectureAwardBRAIN initiativeBehaviorBehavior assessmentBehavioralBiologicalBiometryBrainBrain regionCareer Transition AwardCodeCognitionCognition DisordersCognitiveCollaborationsCommunitiesComplementComplexComputer ModelsComputer softwareDataData AnalysesData SetDevelopmentDiagnostic ErrorsDiseaseDocumentationEmotionsEngineeringEnsureFeedbackFundingFutureGoalsHealthHourHumanIndividualIndividual DifferencesLibrariesLinkLongevityManualsMemoryMethodsMindModelingMonitorOutputParentsPathway AnalysisPerceptionPoliciesProcessProductionProgramming LanguagesReportingReproducibilityResearchRunningSensitivity and SpecificityShapesSoftware DesignSourceStatistical Data InterpretationStatistical MethodsStatistical ModelsTestingTimeUniversitiesUpdateWashingtonWorkanalysis pipelineanalytical toolcohortcomplex datacomputing resourcesconnectomeconnectome datadesignemotion regulationemotional functioningexecutive functionexperiencegraphical user interfaceimprovedin silicoin vivoindividual variationinnovationinterestnetwork architectureneuroimagingnovelopen dataparallel processingparent grantresponsetooltool developmentusabilityyoung adult
项目摘要
PROJECT SUMMARY
Contemporary research views the brain as a large-scale, complex network composed of nonadjacent, yet
connected brain regions. Rather than focusing on a limited set of a priori regions of interest, the field of
neuroimaging has shifted towards statistical testing on associations across the whole connectome, i.e., at every
possible brain connection. However, these connectome-wide association studies have a severe multiple
comparisons problem, necessitating statistical methods which can control the false positive rate for associations
between behavior and upwards of 50k functional connections. The long-term goal of the Parent BRAIN Initiative
R00 (EB029343, ‘Innovative biostatistical approaches to network level analyses of connectome-behavior
relationships’) is to create a statistical analysis software that would leverage the inherent network architecture of
the connectome in order to probe fundamental biological mechanisms underlying the development of healthy
and disordered cognition, behavior, and emotion. Specifically, the parent grant aims to formalize and validate in
house analysis pipelines into a Network Level Analysis (NLA) toolbox as a comprehensive, versatile tool for use
in connectome-wide association studies. While the research focus of this career transition award is on the
application of NLA to developmental mechanisms of executive function and emotion regulation, this versatile
analytic tool will be transformative to connectome data analysis across species, across the lifespan, and in health
and disease. As part of tool development during the K99/R00, Dr. Wheelock has validated multiple NLA
approaches, establishing sensitivity and specificity of network level findings using in silico connectome-behavior
relationships, test-retest reliability of NLA approaches using in vivo human connectome and behavioral data from
the HCP-Young Adult cohort, and ongoing work is extending NLA to investigate changes in connectome
architecture supporting the development of executive and emotional function using connectome and behavioral
data from the ABCD study (N=11,000 age 9-14). In Aim 2 of the R00, NLA toolbox is being updated to reflect
object-oriented programming, incorporating longitudinal models and a graphical user interface. The goal of this
Administrative Supplement is to improve NLA functionality by implementing several crucial changes. Specifically,
funding from this Administrative Supplement, NOT-OD-23-073, will promote refactorization of NLA to improve
computational efficiency, and usability by both developers and end users. The goals of this Supplement are to
1) refactor and optimize computational modeling in lower-level programming languages, 2) incorporate error
logging and expand documentation, and 3) establish unit and integration testing to improve code merging.
Successful completion of these Aims will both complement and extend the impact of the Parent R00, significantly
improving the functionality and sustainability of NLA software in keeping with best practices of open science as
well as increase accessibility of the software, enabling community-wide adoption of network-analysis methods
for connectome-wide association studies.
项目摘要
当代研究认为大脑是一个大规模的复杂网络,由不相邻的,但
连接的大脑区域。与其专注于有限的一组先验感兴趣区域,
神经成像已经转向对整个连接体的关联进行统计测试,即,在每一
可能的大脑连接然而,这些全连接组关联研究有严重的多重性,
比较问题,需要统计方法来控制关联的假阳性率
行为和50 k以上的功能连接之间的关系。家长大脑计划的长期目标
R 00(EB 029343,“连接组行为网络水平分析的创新生物统计方法
关系”)是创建一个统计分析软件,该软件将利用
连接体,以探索健康发育的基本生物学机制,
以及认知、行为和情感的紊乱。具体而言,父母补助金旨在正式化和验证
将分析管道容纳到网络级分析(NLA)工具箱中,作为一个全面、多功能工具使用
在连接组关联研究中。虽然这个职业转型奖的研究重点是在
应用NLA的发展机制的执行功能和情绪调节,这一多功能
分析工具将变革跨物种,跨寿命和健康的连接体数据分析
和疾病作为K99/R 00期间工具开发的一部分,Wheelock博士验证了多个NLA
方法,使用计算机连接组行为建立网络水平发现的灵敏度和特异性
关系,使用体内人类连接体的NLA方法的重测信度和来自
HCP-年轻成人队列,正在进行的工作是扩展NLA,以研究连接体的变化
架构支持执行和情感功能的发展,使用连接体和行为
数据来自ABCD研究(N= 11,000,9-14岁)。在R 00的目标2中,NLA工具箱正在更新,以反映
面向对象的编程,结合纵向模型和图形用户界面。这个目标
行政补充是通过实施几项重要的改革来改进NLA的功能。具体地说,
来自本行政补充文件NOT-OD-23-073的资金将促进NLA的重构,
计算效率以及开发人员和最终用户的可用性。本补编的目标是
1)用低级编程语言重构和优化计算建模,2)合并错误
日志记录和扩展文档,以及3)建立单元和集成测试以改进代码合并。
这些目标的成功完成将极大地补充和扩展母R 00的影响
改进NLA软件的功能和可持续性,以符合开放科学的最佳实践,
并增加软件的可访问性,使社区范围内采用网络分析方法
用于全连接组关联研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Muriah D Wheelock其他文献
Muriah D Wheelock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Muriah D Wheelock', 18)}}的其他基金
Innovative biostatistical approaches to network level analyses of connectome-behavior relationships
连接组-行为关系网络级分析的创新生物统计方法
- 批准号:
10700129 - 财政年份:2022
- 资助金额:
$ 23.33万 - 项目类别:
Innovative biostatistical approaches to network level analyses of connectome-behavior relationships
连接组-行为关系网络级分析的创新生物统计方法
- 批准号:
10630851 - 财政年份:2022
- 资助金额:
$ 23.33万 - 项目类别:
Innovative biostatistical approaches to network level analyses of connectome-behavior relationships
连接组-行为关系网络级分析的创新生物统计方法
- 批准号:
10206140 - 财政年份:2020
- 资助金额:
$ 23.33万 - 项目类别:
Network level analysis of progressive brain degeneration in autosomal dominant Alzheimer disease
常染色体显性阿尔茨海默病进行性脑退化的网络水平分析
- 批准号:
10288428 - 财政年份:2020
- 资助金额:
$ 23.33万 - 项目类别:
Innovative biostatistical approaches to network level analyses of connectome-behavior relationships
连接组-行为关系网络级分析的创新生物统计方法
- 批准号:
10055480 - 财政年份:2020
- 资助金额:
$ 23.33万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 23.33万 - 项目类别:
Research Grant














{{item.name}}会员




