Supplemental support for the development of high spatiotemporal resolution neuronal imager
对高时空分辨率神经元成像仪开发的补充支持
基本信息
- 批准号:10879866
- 负责人:
- 金额:$ 39.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAction PotentialsAdministrative SupplementBrainCalciumCollaborationsComplexDendritesDevelopmentFluorescenceGenerationsHeadHumanImageImaging technologyInvestigationKineticsLabelLightMeasuresMembrane PotentialsMental disordersMicroscopeMicroscopyNeuronsNeurosciencesNeurosciences ResearchPhasePopulationProcessResearchResolutionSignal TransductionSliceSpeedStructureSubcellular structureSynapsesTechnologyTestingcognitive functioncollegecommercializationcostdetectorexperimental studyfluorescence imagingimagerimprovedin vivomillisecondnervous system disorderneuralneuroimagingneuronal cell bodyneurotransmissionnovelnovel imaging techniqueperformance testsphysical scienceprogramsprototyperesearch and developmentsensorspatiotemporalsubmicrontemporal measurementtoolvoltage
项目摘要
Project Summary/Abstract
The investigation of the complex neural dynamics and the cognitive functions of the brain requires non-
invasive recording tools with high spatial and temporal resolution. Fluorescence imaging/microscopy is one
of the state-of-the-art technologies for high spatial resolution recording of the activity of neuron populations.
However, existing fluorescence neural imaging technologies generally have limited speed, providing less
than a few hundred frames per second (or several milliseconds temporal resolution). This is not only limited
by the technology barriers (e.g. the low speed of cameras and/or beam scanners), but also constrained by
the low signal level emitted by the delicate micro-scale neuronal structures. The milliseconds or slower
temporal resolution substantially precludes measuring the precise timing of the generation and propagation
of neuron spikes, which is the key component of neural signaling. During this R&D program,
Physical Sciences Inc. (PSI), Dartmouth College, and the Broad Institute of MIT and Harvard propose
to develop and demonstrate a novel fluorescence neural imaging technology that enables high-speed
recording of membrane potentials from multiple neurons. This technology combines two complementary
imaging channels to achieve parallel neuronal recording with both sub-micron spatial and sub-millisecond
temporal resolution. The high-speed recording function is achieved using a novel imaging technique based
on a high-sensitivity single-point detector and a high-speed spatial light modulator (SLM). During the Phase I,
we demonstrated the feasibility of the technology by imaging cultured neurons labeled with calcium and
voltage indicating fluorescent sensors. During the proposed Phase II, we will upgrade the technology and
further demonstrate its value in neuroscience investigations. The Phase II prototypes will include a universal
high spatiotemporal resolution sensor that is compatible with various imaging setups including head-mounted
fluorescence mini-microscopes. Two Phase II prototypes will be delivered to collaborating institutes for
performance testing. The testing experiments will focus on demonstrating high spatiotemporal resolution
recording of fast action potentials from both neuron somas in the brain in vivo and sub-cellular structures
(e.g., dendrites and synapses) of neuron cultures or brain slices using genetically encoded voltage sensors.
During an administrative supplement support, additional sensors will be built for demonstrations to key
opinion leaders, which will accelerate the commercialization process of the technology. This R&D project will
result in a robust technology for non-invasive recording of neuronal kinetics with high spatiotemporal
resolution, offering a greatly needed tool in the neuroscience field.
项目摘要/摘要
研究复杂的神经动力学和大脑的认知功能需要非
具有高空间和时间分辨率的侵入式记录工具。荧光成像/显微技术就是其中之一
用于高空间分辨率记录神经元群体活动的最先进技术。
然而,现有的荧光神经成像技术通常速度有限,提供的
而不是几百帧每秒(或几毫秒的时间分辨率)。这不仅是有限的
受技术障碍(例如相机和/或光束扫描仪的低速)的限制,但也受到
微细的神经元结构发出的低信号水平。毫秒或更慢
时间分辨率基本上排除了对产生和传播的精确定时的测量
神经元棘波,这是神经信号的关键组成部分。在这个研发项目中,
物理科学公司(PSI)、达特茅斯学院、麻省理工学院和哈佛大学提出
开发和演示一种新的荧光神经成像技术,使高速
记录多个神经元的膜电位。这项技术结合了两种互补的
实现亚微米空间和亚毫秒并行神经元记录的成像通道
时间分辨率。高速记录功能是使用基于
高灵敏度单点探测器和高速空间光调制器(SLM)。在第一阶段,
我们通过对钙标记的培养神经元进行成像,证明了该技术的可行性。
电压指示荧光传感器。在拟建的第二期工程中,我们会提升技术和
进一步证明了它在神经科学研究中的价值。第二阶段的原型将包括一款通用的
高时空分辨率传感器,兼容各种成像设置,包括头戴式
微型荧光显微镜。两个第二阶段的原型将交付给合作研究所
性能测试。测试实验将集中展示高时空分辨率
记录在体大脑神经元胞体和亚细胞结构的快动作电位
(例如,树突和突触)的神经元培养或脑片使用遗传编码的电压传感器。
在管理补充支持期间,将构建额外的传感器以供演示使用
意见领袖,这将加速技术的商业化进程。这个研发项目将
产生了一种健壮的技术,可以无创地记录高时空的神经元动力学
解决方案,为神经科学领域提供了一个亟需的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Youbo Zhao其他文献
Youbo Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Youbo Zhao', 18)}}的其他基金
Ultra-sensitive Singlet Oxygen Dosimeter for Skin Cancer Treatment and Prevention
用于皮肤癌治疗和预防的超灵敏单线态氧剂量计
- 批准号:
10425539 - 财政年份:2021
- 资助金额:
$ 39.89万 - 项目类别:
Ultra-sensitive Singlet Oxygen Dosimeter for Skin Cancer Treatment and Prevention
用于皮肤癌治疗和预防的超灵敏单线态氧剂量计
- 批准号:
10438940 - 财政年份:2021
- 资助金额:
$ 39.89万 - 项目类别:
Ultra-sensitive Singlet Oxygen Dosimeter for Skin Cancer Treatment and Prevention
用于皮肤癌治疗和预防的超灵敏单线态氧剂量计
- 批准号:
10010539 - 财政年份:2020
- 资助金额:
$ 39.89万 - 项目类别:
Optical Redox Probe for Continuous Metabolic Monitoring during Natural Products Bioprocessing
用于天然产品生物加工过程中连续代谢监测的光学氧化还原探针
- 批准号:
10480179 - 财政年份:2019
- 资助金额:
$ 39.89万 - 项目类别:
Advanced Intraoperative Imager for Nerve Identification
用于神经识别的先进术中成像仪
- 批准号:
10594515 - 财政年份:2019
- 资助金额:
$ 39.89万 - 项目类别:
Optical Redox Probe for Continuous Metabolic Monitoring during Natural Products Bioprocessing
用于天然产品生物加工过程中连续代谢监测的光学氧化还原探针
- 批准号:
10687154 - 财政年份:2019
- 资助金额:
$ 39.89万 - 项目类别:
Optical Redox Probe for Continuous Metabolic Monitoring during Natural Products Bioprocessing
用于天然产品生物加工过程中连续代谢监测的光学氧化还原探针
- 批准号:
9907720 - 财政年份:2019
- 资助金额:
$ 39.89万 - 项目类别:
Advanced Intraoperative Imager for Nerve Identification
用于神经识别的先进术中成像仪
- 批准号:
10481320 - 财政年份:2019
- 资助金额:
$ 39.89万 - 项目类别:
High Spatiotemporal Resolution Neural Recording System Using Active Sensing
使用主动传感的高时空分辨率神经记录系统
- 批准号:
10591614 - 财政年份:2018
- 资助金额:
$ 39.89万 - 项目类别:
High Spatiotemporal Resolution Neural Recording System Using Active Sensing
使用主动传感的高时空分辨率神经记录系统
- 批准号:
10481444 - 财政年份:2018
- 资助金额:
$ 39.89万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 39.89万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 39.89万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 39.89万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 39.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 39.89万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 39.89万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 39.89万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 39.89万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 39.89万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 39.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




