Extending the new respiratory paradigm in Bacteroides
扩展拟杆菌的新呼吸范式
基本信息
- 批准号:10884591
- 负责人:
- 金额:$ 72.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-18 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectBacteriaBacteroidesBacteroides fragilisBile AcidsBiochemicalBiochemistryCell RespirationCell physiologyCodeColorCommunitiesComplexConsumptionCouplesCytoplasmDataDependenceDevelopmentDevelopmental ProcessDietary PolysaccharideDigestionDrug Metabolic DetoxicationEcosystemElectron TransportElectronsEnvironmentEnzymatic BiochemistryEnzymesFermentationFoodFormulationFundingGenerationsGenesGeneticGnotobioticGrowthHealthHealth BenefitHumanIn VitroIndustrializationInflammationIntestinesIon PumpsKnowledgeMetabolismMolecularMonosaccharidesMultienzyme ComplexesNADHNitric OxideNitritesNutrientOperonOxidantsPathway interactionsPhenotypePhysiologyPolysaccharidesPopulationProbioticsProcessProductionProtonsQuinonesRegulationRespirationRespiratory ChainRoleSourceToxic effectTranslatingVariantVitamin K 2Volatile Fatty AcidsWorkantiporterbacterial fitnessdesigndietaryelectron donorexperienceexperimental studyfitnessgut inflammationgut microbiotaimmunoregulationimprovedin vivoisoprenoidmembermenmetabolomicsmicrobialmicrobiotamouse modelnitric oxide reductasepatient populationrespiratoryrespiratory enzymetranscription factortranscriptomics
项目摘要
Project Summary/Abstract
Despite the tremendous amount of data that has been generated over the last 15 years regarding the human
intestinal microbiota, we still know relatively little about energy generation processes of most of the abundant
members of this ecosystem, including the Bacteroides. Our gap in this fundamental knowledge hinders our
understanding of interactions between microbial members, how certain conditions in the gut environment affect
microbial compositional changes, and how we may appropriately alter the composition of the ecosystem to
improve human health. Bacteroides is one of the most abundant and stable bacterial genera of the human
intestinal microbiota with strains colonizing their hosts for decades. During the first funding cycle of this project,
we demonstrated that Bacteroides have a complex respiratory chain that provides substantial energy during
both anaerobic and nanaerobic (0.1-0.15% O2) growth. Our studies revealed complexity at many steps in
the respiration pathway and unexpected differences between Bacteroides species that will be pursued in
this renewal application. These new aspects of respiration will be addressed in three specific aims. In Aim
1, we will study the important NUO complex that couples the transfer of electrons to menaquinone with
creation of the proton gradient. The Bacteroides NUO complex is different than in most studied bacteria. In
this aim, we will use genetics and biochemical analyses to conclusively identify the electron donor to NUO,
determine the importance of NUO and Na+/H+ antiporters in maintaining the essential proton gradient, and
determine the contribution of NUO and Na+/H+ antiporters to bacterial fitness in the mammalian gut. In Aim
2, we will study the acquisition and remodeling of the essential respiration component, menaquinone (MK).
Most Bacteroides have all the genes necessary for the de novo synthesis of MK; however, certain
Bacteroides species lack the primary men genes and must obtain and remodel dietary and/or microbial
sources. We will explore unknown features of MK synthesis including how the isoprenoid chain is cleaved
and remodeled, how Bacteroides species without the men operon obtain MK precursors, and the dietary
and/or microbiota sources of these precursors. In Aim 3, we will study the NrfHA complex, the genes of
which are among the most upregulated during nanaerobic growth. We predict NrfHA is an additional terminal
electron donor that functions under nanaerobic conditions and donates electrons to both nitrite and nitric
oxide (NO), detoxifying these molecules. We will study the regulation of the nrfHA operon revealing
transcriptional factors that upregulate genes during nanaerobic growth, study its ability to donate electrons
to both nitrite and NO, and determine if this complex allows Bacteroides to reduce host inflammation and
better survive in the inflamed gut. The experiments of this proposal will reveal numerous aspects of basic
physiology of the Bacteroides that can be translated for human health benefits.
项目摘要/摘要
尽管过去15年中已经产生了大量的数据
肠道菌群,我们仍然对大多数丰富的能源产生过程相对较少了解
该生态系统的成员,包括菌落。我们在这种基本知识中的差距阻碍了我们
了解微生物成员之间的相互作用,肠道环境中的某些条件如何影响
微生物组成的变化,以及我们如何适当地改变生态系统的组成
改善人类健康。细菌是人类最丰富,最稳定的细菌属之一
肠道菌群具有菌株,将其宿主定居数十年。在这个项目的第一个资金周期中,
我们证明了细菌具有复杂的呼吸链,可在
厌氧和鼻虫(0.1-0.15%O2)的生长。我们的研究揭示了许多步骤的复杂性
呼吸途径和细菌种类之间的意外差异将在
此更新应用。这些新的呼吸方面将以三个具体目标解决。目标
1,我们将研究重要的NUO复合体
创建质子梯度。细菌型NUO复合物与大多数研究的细菌不同。在
这个目的,我们将使用遗传学和生化分析来最终确定NUO的电子供体,
确定NUO和Na+/H+抗植物对维持必需质子梯度的重要性,并且
确定NUO和Na+/H+抗替代剂对哺乳动物肠道细菌适应性的贡献。目标
2,我们将研究基本呼吸成分甲酮酮(MK)的获取和重塑。
大多数细菌具有MK从头合成所需的所有基因。但是,可以肯定
细菌物种缺乏主要男性基因,必须获得和重塑饮食和/或微生物
来源。我们将探索MK合成的未知特征,包括如何裂解异丙链
并重塑,没有男性操纵子的杀菌物种如何获得MK前体,饮食
和/或这些前体的微生物源。在AIM 3中,我们将研究NRFHA复合体,即
这是鼻虫生长期间最上调的之一。我们预测NRFHA是一个额外的终端
电子供体在鼻虫条件下起作用,并将电子捐赠给亚硝酸盐和硝酸盐
氧化物(NO),排毒这些分子。我们将研究NRFHA操纵子的调节
转录因素上调鼻刺生长期间基因的转录因子,研究其捐赠电子的能力
对亚硝酸盐和否,并确定该复合物是否允许菌孢菌减少宿主炎症,并且
在发炎的肠道中更好地生存。该提案的实验将揭示基本的许多方面
可以转化为人类健康益处的菌孢子的生理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Blanca Barquera其他文献
Blanca Barquera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Blanca Barquera', 18)}}的其他基金
Alzheimer's Disease, Bone Health and Microbiome
阿尔茨海默病、骨骼健康和微生物组
- 批准号:
10064449 - 财政年份:2020
- 资助金额:
$ 72.21万 - 项目类别:
A new paradigm of respiration in the human gut Bacteroides
人类肠道拟杆菌呼吸的新范例
- 批准号:
9974458 - 财政年份:2017
- 资助金额:
$ 72.21万 - 项目类别:
A new paradigm of respiration in the human gut Bacteroides
人类肠道拟杆菌呼吸的新范例
- 批准号:
9366764 - 财政年份:2017
- 资助金额:
$ 72.21万 - 项目类别:
Na+-pumping NADH:quinone oxidoreductase of V. cholerae
钠泵NADH:霍乱弧菌醌氧化还原酶
- 批准号:
7942227 - 财政年份:2009
- 资助金额:
$ 72.21万 - 项目类别:
Na+-pumping NADH:quinone oxidoreductase of V.cholerae
钠泵NADH:霍乱弧菌醌氧化还原酶
- 批准号:
6932322 - 财政年份:2004
- 资助金额:
$ 72.21万 - 项目类别:
Na+-pumping NADH:quinone oxidoreductase of V. cholerae
钠泵NADH:霍乱弧菌醌氧化还原酶
- 批准号:
6714192 - 财政年份:2004
- 资助金额:
$ 72.21万 - 项目类别:
Na+-pumping NADH:quinone oxidoreductase of V.cholerae
钠泵NADH:霍乱弧菌醌氧化还原酶
- 批准号:
7107226 - 财政年份:2004
- 资助金额:
$ 72.21万 - 项目类别:
Na+-pumping NADH:quinone oxidoreductase of V. cholerae
钠泵NADH:霍乱弧菌醌氧化还原酶
- 批准号:
7479334 - 财政年份:2004
- 资助金额:
$ 72.21万 - 项目类别:
Na+-pumping NADH:quinone oxidoreductase of V. cholerae
钠泵NADH:霍乱弧菌醌氧化还原酶
- 批准号:
7268958 - 财政年份:2004
- 资助金额:
$ 72.21万 - 项目类别:
相似国自然基金
盐度对趋磁细菌生物矿化的影响及机理研究
- 批准号:42304079
- 批准年份:2023
- 资助金额:20.00 万元
- 项目类别:青年科学基金项目
水平基因转移对蓝细菌基因组演化及生态适应性的影响
- 批准号:32370009
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
猪粪还田中重金属—抗生素复合污染对土壤细菌耐药性的影响机制
- 批准号:52300226
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
铁卟啉在细菌外膜囊泡OMVs所致脓毒症DIC中的作用及机制研究
- 批准号:82302451
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
附生细菌诱导对铜绿微囊藻抑菌物质的影响及其抑菌机制研究
- 批准号:32360028
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
MAIT cells in lupus skin disease and photosensitivity
MAIT 细胞在狼疮皮肤病和光敏性中的作用
- 批准号:
10556664 - 财政年份:2023
- 资助金额:
$ 72.21万 - 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 72.21万 - 项目类别:
Mechanistic characterization of vaginal microbiome-metabolome associations and metabolite-mediated host inflammation
阴道微生物组-代谢组关联和代谢物介导的宿主炎症的机制特征
- 批准号:
10663410 - 财政年份:2023
- 资助金额:
$ 72.21万 - 项目类别:
Using Salmonella Pathogenesis and Cell Biology as a Discovery Tool
使用沙门氏菌发病机制和细胞生物学作为发现工具
- 批准号:
10665946 - 财政年份:2023
- 资助金额:
$ 72.21万 - 项目类别:
Copper Sensing in Uropathogenic Escherichia coli
尿路致病性大肠杆菌中的铜感应
- 批准号:
10604449 - 财政年份:2023
- 资助金额:
$ 72.21万 - 项目类别: