Extending the new respiratory paradigm in Bacteroides
扩展拟杆菌的新呼吸范式
基本信息
- 批准号:10884591
- 负责人:
- 金额:$ 72.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-18 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectBacteriaBacteroidesBacteroides fragilisBile AcidsBiochemicalBiochemistryCell RespirationCell physiologyCodeColorCommunitiesComplexConsumptionCouplesCytoplasmDataDependenceDevelopmentDevelopmental ProcessDietary PolysaccharideDigestionDrug Metabolic DetoxicationEcosystemElectron TransportElectronsEnvironmentEnzymatic BiochemistryEnzymesFermentationFoodFormulationFundingGenerationsGenesGeneticGnotobioticGrowthHealthHealth BenefitHumanIn VitroIndustrializationInflammationIntestinesIon PumpsKnowledgeMetabolismMolecularMonosaccharidesMultienzyme ComplexesNADHNitric OxideNitritesNutrientOperonOxidantsPathway interactionsPhenotypePhysiologyPolysaccharidesPopulationProbioticsProcessProductionProtonsQuinonesRegulationRespirationRespiratory ChainRoleSourceToxic effectTranslatingVariantVitamin K 2Volatile Fatty AcidsWorkantiporterbacterial fitnessdesigndietaryelectron donorexperienceexperimental studyfitnessgut inflammationgut microbiotaimmunoregulationimprovedin vivoisoprenoidmembermenmetabolomicsmicrobialmicrobiotamouse modelnitric oxide reductasepatient populationrespiratoryrespiratory enzymetranscription factortranscriptomics
项目摘要
Project Summary/Abstract
Despite the tremendous amount of data that has been generated over the last 15 years regarding the human
intestinal microbiota, we still know relatively little about energy generation processes of most of the abundant
members of this ecosystem, including the Bacteroides. Our gap in this fundamental knowledge hinders our
understanding of interactions between microbial members, how certain conditions in the gut environment affect
microbial compositional changes, and how we may appropriately alter the composition of the ecosystem to
improve human health. Bacteroides is one of the most abundant and stable bacterial genera of the human
intestinal microbiota with strains colonizing their hosts for decades. During the first funding cycle of this project,
we demonstrated that Bacteroides have a complex respiratory chain that provides substantial energy during
both anaerobic and nanaerobic (0.1-0.15% O2) growth. Our studies revealed complexity at many steps in
the respiration pathway and unexpected differences between Bacteroides species that will be pursued in
this renewal application. These new aspects of respiration will be addressed in three specific aims. In Aim
1, we will study the important NUO complex that couples the transfer of electrons to menaquinone with
creation of the proton gradient. The Bacteroides NUO complex is different than in most studied bacteria. In
this aim, we will use genetics and biochemical analyses to conclusively identify the electron donor to NUO,
determine the importance of NUO and Na+/H+ antiporters in maintaining the essential proton gradient, and
determine the contribution of NUO and Na+/H+ antiporters to bacterial fitness in the mammalian gut. In Aim
2, we will study the acquisition and remodeling of the essential respiration component, menaquinone (MK).
Most Bacteroides have all the genes necessary for the de novo synthesis of MK; however, certain
Bacteroides species lack the primary men genes and must obtain and remodel dietary and/or microbial
sources. We will explore unknown features of MK synthesis including how the isoprenoid chain is cleaved
and remodeled, how Bacteroides species without the men operon obtain MK precursors, and the dietary
and/or microbiota sources of these precursors. In Aim 3, we will study the NrfHA complex, the genes of
which are among the most upregulated during nanaerobic growth. We predict NrfHA is an additional terminal
electron donor that functions under nanaerobic conditions and donates electrons to both nitrite and nitric
oxide (NO), detoxifying these molecules. We will study the regulation of the nrfHA operon revealing
transcriptional factors that upregulate genes during nanaerobic growth, study its ability to donate electrons
to both nitrite and NO, and determine if this complex allows Bacteroides to reduce host inflammation and
better survive in the inflamed gut. The experiments of this proposal will reveal numerous aspects of basic
physiology of the Bacteroides that can be translated for human health benefits.
项目总结/摘要
尽管在过去的15年里产生了大量关于人类的数据,
虽然我们对肠道微生物的能量产生过程知之甚少,但大多数丰富的肠道微生物
这个生态系统的成员,包括拟杆菌。我们在这一基本知识上的差距阻碍了我们
了解微生物成员之间的相互作用,肠道环境中的某些条件如何影响
微生物组成的变化,以及我们如何适当地改变生态系统的组成,
改善人类健康。拟杆菌属是人类最丰富和最稳定的细菌属之一
肠道微生物群与菌株殖民他们的主机几十年。在该项目的第一个供资周期,
我们证明了拟杆菌有一个复杂的呼吸链,在呼吸过程中提供大量的能量。
厌氧和纳米需氧(0.1- 0.15%O2)生长。我们的研究揭示了许多步骤的复杂性,
呼吸途径和拟杆菌属物种之间意想不到的差异,将在
这一更新申请。呼吸的这些新方面将在三个具体目标中得到解决。在Aim中
1,我们将研究重要的NUO复合物,该复合物将电子转移到甲基萘醌,
质子梯度的产生。拟杆菌NUO复合体与大多数研究的细菌不同。在
为此,我们将使用遗传学和生物化学分析来最终确定NUO的电子供体,
确定NUO和Na+/H+反向转运蛋白在维持必要质子梯度中的重要性,以及
确定NUO和Na+/H+反向转运蛋白对哺乳动物肠道中细菌适应性的贡献。在Aim中
2、研究呼吸系统中重要的呼吸成分甲基萘醌(menaquinone,MK)的获得和重构。
大多数拟杆菌具有MK从头合成所必需的所有基因;然而,某些拟杆菌具有MK从头合成所必需的所有基因。
拟杆菌属物种缺乏主要的men基因,并且必须获得和改造膳食和/或微生物营养素。
源我们将探索MK合成的未知特征,包括类异戊二烯链是如何裂解的
和改造,如何Bacteroides物种没有男性操纵子获得MK前体,以及饮食
和/或这些前体的微生物群来源。在目标3中,我们将研究NrfHA复合物,即以下基因:
它们是在纳米需氧生长过程中上调最多的。我们预测NrfHA是一个额外的终端
在纳米需氧条件下起作用并向亚硝酸盐和硝酸盐提供电子的电子供体
氧化物(NO),解毒这些分子。我们将研究nrfHA操纵子揭示的调控
在纳米需氧生长过程中上调基因的转录因子,研究其捐赠电子的能力
亚硝酸盐和NO,并确定这种复合物是否允许拟杆菌减少宿主炎症,
更好地在发炎的肠道中生存这项提议的实验将揭示基本的
拟杆菌的生理学可以转化为人类健康的好处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Blanca Barquera其他文献
Blanca Barquera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Blanca Barquera', 18)}}的其他基金
Alzheimer's Disease, Bone Health and Microbiome
阿尔茨海默病、骨骼健康和微生物组
- 批准号:
10064449 - 财政年份:2020
- 资助金额:
$ 72.21万 - 项目类别:
A new paradigm of respiration in the human gut Bacteroides
人类肠道拟杆菌呼吸的新范例
- 批准号:
9974458 - 财政年份:2017
- 资助金额:
$ 72.21万 - 项目类别:
A new paradigm of respiration in the human gut Bacteroides
人类肠道拟杆菌呼吸的新范例
- 批准号:
9366764 - 财政年份:2017
- 资助金额:
$ 72.21万 - 项目类别:
Na+-pumping NADH:quinone oxidoreductase of V. cholerae
钠泵NADH:霍乱弧菌醌氧化还原酶
- 批准号:
7942227 - 财政年份:2009
- 资助金额:
$ 72.21万 - 项目类别:
Na+-pumping NADH:quinone oxidoreductase of V.cholerae
钠泵NADH:霍乱弧菌醌氧化还原酶
- 批准号:
6932322 - 财政年份:2004
- 资助金额:
$ 72.21万 - 项目类别:
Na+-pumping NADH:quinone oxidoreductase of V. cholerae
钠泵NADH:霍乱弧菌醌氧化还原酶
- 批准号:
6714192 - 财政年份:2004
- 资助金额:
$ 72.21万 - 项目类别:
Na+-pumping NADH:quinone oxidoreductase of V.cholerae
钠泵NADH:霍乱弧菌醌氧化还原酶
- 批准号:
7107226 - 财政年份:2004
- 资助金额:
$ 72.21万 - 项目类别:
Na+-pumping NADH:quinone oxidoreductase of V. cholerae
钠泵NADH:霍乱弧菌醌氧化还原酶
- 批准号:
7479334 - 财政年份:2004
- 资助金额:
$ 72.21万 - 项目类别:
Na+-pumping NADH:quinone oxidoreductase of V. cholerae
钠泵NADH:霍乱弧菌醌氧化还原酶
- 批准号:
7268958 - 财政年份:2004
- 资助金额:
$ 72.21万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 72.21万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 72.21万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 72.21万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 72.21万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 72.21万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 72.21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 72.21万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 72.21万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 72.21万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 72.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




