A data science approach to identify and manage Multisystem Inflammatory Syndrome in Children (MIS-C) associated with SARS-CoV-2 infection and Kawasaki disease in pediatric patients
一种数据科学方法,用于识别和管理与儿科患者 SARS-CoV-2 感染和川崎病相关的儿童多系统炎症综合征 (MIS-C)
基本信息
- 批准号:10847802
- 负责人:
- 金额:$ 151.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAccelerationAddressAffectAlgorithmsBenignBiological MarkersCOVID-19 pandemicCOVID-19 patientCertificationChildChildhoodClinicalClinical DataClinical Decision Support SystemsClinical ManagementCollaborationsComplexConsultationsDataData CollectionData ScienceDecision Support SystemsDevelopmentDiagnosisDiseaseElectronic Health RecordEnrollmentEpidemiologic MonitoringEpidemiologyEtiologyEvaluationFeedbackFunctional disorderFutureGrantHeart DiseasesImageInflammatoryInternationalInvestigationKnowledgeLeadManagement Decision Support SystemsMeasurementMethodsModelingMucocutaneous Lymph Node SyndromeMultisystem Inflammatory Syndrome in ChildrenNewly DiagnosedOutcomePatientsPerformancePhasePhenotypePhysiciansPositioning AttributeProbabilityProcessProtocols documentationRecording of previous eventsRegistriesReportingResearch PersonnelResource-limited settingRiskSARS-CoV-2 exposureSARS-CoV-2 infectionSigns and SymptomsSiteSyndromeSystemTestingTimeTrainingValidationVascular DiseasesWorkadverse outcomealgorithm developmentapplication programming interfaceclinical decision supportclinical developmentclinical predictorscoronavirus diseasedesigndisease registryepidemiologic dataexperienceinteroperabilitylarge scale datamachine learning algorithmmachine learning predictionmedical complicationnoveloptimal treatmentsparticipant enrollmentpediatric patientspredicting responsepredictive modelingpredictive toolsprospectiveresponsesurveillance datatooltransfer learningtreatment response
项目摘要
Summary – Since the SARS-CoV-2 pandemic began, the emergence of an associated novel multisystem
inflammatory syndrome in children (MIS-C) has been reported. Interestingly, patients with MIS-C follow a
presentation, management and clinical course that are somewhat similar to that of patients with Kawasaki
disease (KD). Currently, the reason for such an overlap in clinical features and management is unclear and
whether this overlap is the result of a partially shared etiology or pathophysiology is the subject of fierce
debates. The degree of overlap implies that some of the clinical prediction tools that we have developed in the
past for KD could be repurposed to accelerate the development of clinical support decision tools for MIS-C. In
this study, we will first (R61 component) systematically address the overlap between KD and MIS-C and create
salient machine-learning based prediction models for diagnosis/identification (Aim #1), management (Aim #2),
and short- and long-term outcomes (Aim #3) of MIS-C based on our previously developed predictive models for
KD in a process akin to transfer learning. Secondly (R33 component), we will validate and evaluate the
performance and clinical utility of these models in a predictive clinical decision support system for the diagnosis
and management of pediatric patients presenting with features indicative of either MIS-C or KD. In this study we
will include 3 groups of patients: 1) patients with SARS-CoV-2 infection with MIS-C (CDC criteria) regardless of
whether they have overlapping signs of KD, 2) patients with SARS-CoV-2 infection investigated for but
eventually not diagnosed with MIS-C, and 3) patients with KD but without SARS-CoV-2 infection. Targeted data
will be collected from enrolled patients (900 for training and 450 for validation) for deep phenotyping and
biomarker measurements. Physician feedback on the predictions generated by the algorithm will be used to
establish clinical utility. Data required for model training will be accrued in the first two years of activity (R61
period of the grant); the development of algorithms and their internal validation will occur concurrently. In the
following 2 years (R33 period of the grant), we will perform external validation, establish clinical utility, add real-
time epidemiological surveillance data to the models and finally package, and certify the algorithms for future
deployment and for the integration in electronic health records. This project will be a collaboration with the
International Kawasaki Disease Registry (IKDR) Consortium. The IKDR Consortium has an active KD and
pediatric COVID registry in 35 sites across the world and the number of sites is currently expanding to 60+ sites.
More than 600 MIS-C patients have already been identified at IKDR centers, making this project clearly feasible
and perfectly positioning IKDR to perform this study. We strongly believe that the use of emerging data science
methods and of our previously developed algorithms in the context of KD, as opposed to focusing on MIS-C
patients alone, will boost our understanding of the etiology and pathophysiology of both MIS-C and KD and will
more rapidly lead to the emergence of data-driven management protocols for patients with MIS-C.
摘要-自从SARS-CoV-2大流行开始以来,相关的新的多系统
儿童炎症综合征(MIS-C)。有趣的是,MIS-C患者遵循一个
与川崎患者的临床表现、治疗和临床过程有些相似
疾病(KD)。目前,临床特征和管理重叠的原因尚不清楚,
这种重叠是否是部分共同的病因或病理生理学的结果是激烈的主题,
辩论。重叠的程度意味着我们在研究中开发的一些临床预测工具
过去的KD可以重新利用,以加速MIS-C临床支持决策工具的开发。在
在这项研究中,我们将首先(R61组件)系统地解决KD和MIS-C之间的重叠,并创建
用于诊断/识别(目标#1)、管理(目标#2)、
以及MIS-C的短期和长期结果(目标3),基于我们先前开发的预测模型,
KD的过程类似于迁移学习。其次(R33组件),我们将验证和评估
这些模型在用于诊断的预测性临床决策支持系统中的性能和临床效用
以及对表现出MIS-C或KD特征的儿科患者的管理。本研究
将包括3组患者:1)SARS-CoV-2感染MIS-C(CDC标准)的患者,无论
他们是否有KD的重叠体征,2)对SARS-CoV-2感染患者进行调查,
最终未诊断为MIS-C; 3)KD但未感染SARS-CoV-2的患者。目标数据
将从入组患者中收集(900例用于培训,450例用于验证)用于深度表型分析,
生物标志物测量。医生对算法生成的预测的反馈将用于
建立临床效用。模型培训所需的数据将在活动的头两年累积(R61
在赠款期间);算法的开发及其内部验证将同时进行。在
2年后(R33资助期),我们将进行外部验证,建立临床效用,增加真实的-
将流行病学监测数据与模型结合,最后对模型进行封装,并对算法进行验证,以备将来使用
部署和集成到电子健康记录中。该项目将是一个合作与
国际川崎病登记(IKDR)联盟。IKDR联盟有一个活跃的KD,
在全球35个研究中心进行儿科COVID登记,研究中心的数量目前正在扩大到60多个研究中心。
IKDR中心已经确定了600多名MIS-C患者,使该项目明显可行
并完美地定位IKDR来进行这项研究。我们坚信,使用新兴的数据科学
方法和我们以前开发的算法在KD的上下文中,而不是专注于MIS-C
患者,将提高我们对MIS-C和KD的病因学和病理生理学的理解,
更快地导致MIS-C患者的数据驱动管理协议的出现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nagib Dahdah其他文献
Nagib Dahdah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nagib Dahdah', 18)}}的其他基金
A data science approach to identify and manage Multisystem Inflammatory Syndrome in Children (MIS-C) associated with SARS-CoV-2 infection and Kawasaki disease in pediatric patients
一种数据科学方法,用于识别和管理与儿科患者 SARS-CoV-2 感染和川崎病相关的儿童多系统炎症综合征 (MIS-C)
- 批准号:
10320999 - 财政年份:2021
- 资助金额:
$ 151.67万 - 项目类别:
A data science approach to identify and manage Multisystem Inflammatory Syndrome in Children (MIS-C) associated with SARS-CoV-2 infection and Kawasaki disease in pediatric patients
一种数据科学方法,用于识别和管理与儿科患者 SARS-CoV-2 感染和川崎病相关的儿童多系统炎症综合征 (MIS-C)
- 批准号:
10733695 - 财政年份:2021
- 资助金额:
$ 151.67万 - 项目类别:
A data science approach to identify and manage Multisystem Inflammatory Syndrome in Children (MIS-C) associated with SARS-CoV-2 infection and Kawasaki disease in pediatric patients
一种数据科学方法,用于识别和管理与儿科患者 SARS-CoV-2 感染和川崎病相关的儿童多系统炎症综合征 (MIS-C)
- 批准号:
10272448 - 财政年份:2021
- 资助金额:
$ 151.67万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 151.67万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 151.67万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 151.67万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 151.67万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 151.67万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 151.67万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 151.67万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 151.67万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 151.67万 - 项目类别:
Standard Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 151.67万 - 项目类别:
Standard Grant