A Novel Multimodal Approach to Characterize NAFLD Severity and Prognosis

表征 NAFLD 严重程度和预后的新型多模式方法

基本信息

项目摘要

PROJECT SUMMARY Nonalcoholic fatty liver disease (NAFLD) is an increasingly common cause of cirrhosis and on pace to be the leading indication for liver transplantation in the United States.(1, 2) NAFLD presents as a spectrum of disease ranging from isolated steatosis, which portends little risk of significant morbidity, to nonalcoholic steatohepatitis (NASH), which is characterized by inflammation and cell death and has substantial risk of progression to cirrhosis and liver-related mortality.(3) Unfortunately, liver biopsy remains the only way to accurately discriminate between isolated steatosis and NASH; however the procedure is invasive and remains impractical to scale to the estimated affected population of 60 million adults in the United States. Attempts to use individual or small combinations of biomarkers to characterize risk in NAFLD have been largely unsuccessful leaving a tremendous need for non-invasive risk stratification. My central hypothesis is that distinct subtypes of NAFLD can be identified by combining multiple non-invasive biomarkers, genetic and clinical factors using advanced analytic techniques for high dimensional data. Through my collaboration with the NIH-funded, multicenter NASH Clinical Research Network (NASH CRN) I explored the association between 28 putative plasma biomarkers and NAFLD histology and found that small sets of biomarkers were limited in discriminating between clinically significant stages of histologic severity. However, by applying a novel statistical technique, latent class analysis (LCA), we generated preliminary data identifying distinct subgroups of patients with NAFLD that are strongly associated with histologic severity. The research goal of this application is to (1) combine clinical and dietary factors, genetic markers and an expanded set of plasma biomarkers to refine distinct phenotypes of NAFLD using LCA, (2) validate the association between LCA defined phenotypes and histologic severity in an independent cohort with biopsy proven NAFLD, (3) build on an existing longitudinal cohort and test the ability of these phenotypes to predict progression of fibrosis. My long-term goal is to combine expertise in multimodal, non-invasive biomarkers of NAFLD with advanced analytic techniques to personalize the management and treatment of patients with NAFLD. In order to accomplish this goal, I have assembled an exceptional mentorship team including my primary mentor, Dr. Rohit Loomba, who is an internationally renowned expert in NAFLD and Director of the UCSD NAFLD Research Center. In addition, Dr. Ariel Feldstein, Chief of the Division of Pediatric Gastroenterology, and an expert in translating NAFLD pathophysiology into biomarker development will serve as a co-mentor. Professor Lily Xu, biostatistical director of the UCSD Clinical and Translational Research Institute, will serve as my biostatistical mentor. Together, we formed a four-fold career development plan to gain expertise in (1) cohort development, biobanking and advanced NAFLD phenotyping, (2) statistical analysis of genetic and high dimensional data, (3) NAFLD pathobiology and biomarker development, and (4) research dissemination and the development of national recognition in the non-invasive assessment of NAFLD.
项目总结 非酒精性脂肪性肝病(NAFLD)是导致肝硬变的一种越来越常见的原因,并有可能成为 美国肝移植的主要适应症。(1,2)非酒精性脂肪肝表现为一系列疾病 从孤立性脂肪变性到非酒精性脂肪性肝炎,这些脂肪变性预示着发病率很低 (NASH),以炎症和细胞死亡为特征,有很大的进展为肝硬变的风险 和肝脏相关的死亡率。(3)不幸的是,肝脏活检仍然是准确区分 孤立的脂肪变性和NASH;然而,该过程是侵入性的,仍然不适用于扩大到 据估计,美国受影响的成年人人数为6000万。试图使用个人或小型 用于表征NAFLD风险的生物标志物组合在很大程度上并不成功,留下了巨大的 需要进行非侵入性风险分层。我的中心假设是可以确定NAFLD的不同亚型 使用先进的分析技术将多种非侵入性生物标志物、遗传和临床因素结合起来 用于高维数据。通过我与NIH资助的多中心NASH临床研究中心的合作 网络(Nash CRN)I研究了28个可能的血浆生物标记物与NAFLD组织学之间的关系 并发现少量的生物标记物在区分临床上有意义的疾病阶段方面是有限的。 组织学严重度。然而,通过应用一种新的统计技术,潜在类别分析(LCA),我们生成了 初步数据确定与组织学密切相关的NAFLD患者亚组 严肃性。这一应用的研究目标是(1)结合临床和饮食因素、遗传标记和 一组扩展的血浆生物标记物,用于使用LCA精炼NAFLD的不同表型,(2)验证 LCA定义的表型与组织学严重程度之间的关系 已证实的NAFLD,(3)建立在现有纵向队列的基础上,并测试这些表型预测的能力 纤维化的进展。我的长期目标是将多模式、非侵入性生物标志物方面的专业知识结合起来 NAFLD采用先进的分析技术,使患者的管理和治疗个性化 NAFLD。为了实现这一目标,我组建了一支杰出的导师团队,包括我的主要导师 导师罗希特·伦巴博士,国际知名的NAFLD专家,加州大学圣迭戈分校NAFLD主任 研究中心。此外,儿科消化科主任Ariel Feldstein博士和一位 将NAFLD病理生理学转化为生物标记物开发的专家将担任共同导师。教授 加州大学圣地亚哥分校临床和翻译研究所生物统计学主任莉莉·徐将担任我的 生物统计学导师。我们一起形成了一个四重职业发展计划,以获得(1)队列中的专业知识 发展,生物库和高级NAFLD表型,(2)遗传和高危人群的统计分析 维度数据,(3)NAFLD病理生物学和生物标记物开发,以及(4)研究传播和 国家对非酒精性脂肪肝的非侵入性评估的发展。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards omics-based risk assessment in NAFLD.
NAFLD 中基于组学的风险评估。
  • DOI:
    10.1038/s42255-023-00772-4
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    20.8
  • 作者:
    Ajmera,Veeral
  • 通讯作者:
    Ajmera,Veeral
Acute Fulminant Hepatic Failure in 23-Year-Old Female Taking Homeopathic Remedy.
Editorial: "being normal weight each day keeps NAFLD and fibrosis away"-the importance of reducing cumulative exposure to overweight. Authors' reply.
社论:“每天保持正常体重可以远离 NAFLD 和纤维化”——减少累积超重的重要性。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Veeral Haresh Ajmera其他文献

Veeral Haresh Ajmera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Veeral Haresh Ajmera', 18)}}的其他基金

A Novel Multimodal Approach to Characterize NAFLD Severity and Prognosis
表征 NAFLD 严重程度和预后的新型多模式方法
  • 批准号:
    10426202
  • 财政年份:
    2019
  • 资助金额:
    $ 10.23万
  • 项目类别:
A Novel Multimodal Approach to Characterize NAFLD Severity and Prognosis
表征 NAFLD 严重程度和预后的新型多模式方法
  • 批准号:
    10164766
  • 财政年份:
    2019
  • 资助金额:
    $ 10.23万
  • 项目类别:
A Novel Multimodal Approach to Characterize NAFLD Severity and Prognosis
表征 NAFLD 严重程度和预后的新型多模式方法
  • 批准号:
    10630178
  • 财政年份:
    2019
  • 资助金额:
    $ 10.23万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 10.23万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了