Big Data Health Science Fellow Program in Infectious Disease Research

传染病研究大数据健康科学研究生计划

基本信息

  • 批准号:
    10897421
  • 负责人:
  • 金额:
    $ 10.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-04 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Abstract The multiple, massive, and rich Big Data streams in healthcare (e.g., electronic health records, mobile technologies, wearable devices, genomic data) and the emergence of advanced information and computational technologies (e.g., machine learning and artificial intelligence) offer an invaluable opportunity for applying innovative Big Data science research in NIAID focus areas of infectious diseases such as HIV/AIDS and COVID-19. Big Data science has the potential to identify high-risk individuals and communities and prioritize them for early biomedical or public health interventions, predict long-term clinical outcomes and disease progression, and evaluate public health policy impact. Key to addressing these complexities is a critical mass of health researchers with adequate knowledge, competencies, and skills to unlock important answers from Big Data to better understand, treat, and ultimately prevent these diseases and related comorbidities. However, there is a nationwide shortage of talent with such knowledge, competencies, and skills, especially in traditional academic settings. While junior faculty, as part of the generations of digital learners, have the greatest potential to develop their Big Data health science research agenda, many face multiple structural barriers to conduct Big Data science research. Such barriers include a lack of protected time to initiate new interdisciplinary Big Data research, lack of opportunity to participate in funded Big Data research, and a lack of adequate mentoring. To address these gaps, we propose developing a “Big Data Heath Science Fellow” program for early career junior faculty (i.e., assistant professors) at health science schools (e.g., medicine, public health, nursing, pharmacy, social work) at the University of South Carolina (USC). Specifically, we plan to recruit 4 USC health science junior faculty per year and provide them with protected time (25%) to participate in the comprehensive training program, including: 1) courses for competency and skill development in Big Data research and professional development; 2) participation in hands-on research and grant proposal development; and 3) rich mentoring experience in Big Data research and professional development. The proposed training program will be implemented with the support of the existing infrastructure of the USC Big Data Health Science Center (BDHSC), one of USC’s Excellence Initiatives. BDHSC’s mission is to promote and support Big Data health science research at USC and across SC through capacity development, academic training, professional development, community engagement, and methodological advancement. BDHSC contains 5 content cores (electronic health records, geospatial, genomic, social media, and bio-nanomaterial data) and 2 supporting hubs (business/entrepreneurship and technology) with the involvement of 43 faculty from 10 USC college/schools. The proposed training will be an integral component of the BDHSC professional development mission. Upon the accomplishment of the proposed training, each trainee will be expected to: 1) obtain hands- on mentored research experience on an NIAID-funded project; 2) develop at least one Big Data-related manuscript on HIV or COVID-19; and 3) submit one grant application to NIAID or other appropriate funding source. The training program will foster a research environment to encourage individuals from diverse backgrounds, including those from underrepresented groups, to pursue further Big Data health science research in HIV, COVID-19, and other NIAID focus areas.
摘要 医疗保健中的多个、大规模和丰富的大数据流(例如,电子健康记录,移动的 技术、可穿戴设备、基因组数据)以及先进信息和计算技术的出现, 技术(例如,机器学习和人工智能)提供了一个宝贵的机会, NIAID重点传染病领域的创新大数据科学研究,如艾滋病毒/艾滋病和 2019冠状病毒病。大数据科学有可能识别高风险的个人和社区, 它们用于早期生物医学或公共卫生干预,预测长期临床结果和疾病 评估公共卫生政策的影响。解决这些复杂性的关键是要有一个临界质量 健康研究人员拥有足够的知识,能力和技能,可以从大 数据,以更好地了解,治疗,并最终预防这些疾病和相关的合并症。然而,在这方面, 具有这种知识、能力和技能的人才在全国范围内都很短缺,特别是在传统行业。 学术环境。而初级教师作为数字学习者的一部分, 为了发展他们的大数据健康科学研究议程,许多人面临着进行大数据研究的多重结构性障碍。 数据科学研究。这些障碍包括缺乏受保护的时间来启动新的跨学科大数据 研究,缺乏参与资助的大数据研究的机会,以及缺乏足够的指导。到 为了解决这些差距,我们建议为职业生涯初期的年轻人开发一个“大数据健康科学研究员”计划, 教员(即,助理教授)在健康科学学校(例如,医学、公共卫生、护理、药学、 社会工作)在南卡罗来纳州大学(USC)。具体来说,我们计划招募4名南加州大学健康科学 并为他们提供受保护的时间(25%)参加综合培训 计划,包括:1)大数据研究和专业能力和技能发展课程 开发; 2)参与实践研究和赠款提案开发;以及3)丰富的指导 大数据研究和专业发展经验。拟议的培训方案将是 在南加州大学大数据健康科学中心现有基础设施的支持下实施 (BDHSC),南加州大学的卓越计划之一。BDHSC的使命是促进和支持大数据健康 科学研究在南加州大学和整个SC通过能力发展,学术培训,专业 发展、社区参与和方法进步。BDHSC包含5个内容核心 (电子健康记录、地理空间、基因组、社交媒体和生物纳米材料数据)和2个支持 中心(商业/创业和技术),来自10个南加州大学的43名教师参与 学院/学校。拟议的培训将是BDHSC专业发展的一个组成部分 使命。在完成拟议的培训后,每个受训者将被期望:1)获得手- 在NIAID资助的项目上的指导研究经验; 2)开发至少一个与大数据相关的 关于艾滋病毒或COVID-19的手稿;以及3)向NIAID或其他适当的资金提交一份赠款申请 源头培训计划将培养一个研究环境,鼓励来自不同领域的个人 背景,包括那些来自代表性不足的群体,进一步追求大数据健康科学 在艾滋病毒,COVID-19和其他NIAID重点领域的研究。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Bayesian Spatial Scan Statistic for Multinomial Data.
多项数据的贝叶斯空间扫描统计。
  • DOI:
    10.1016/j.spl.2023.110005
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Self,Stella;Nolan,Melissa
  • 通讯作者:
    Nolan,Melissa
Ecologic analysis of antimicrobial use in South Carolina hospitals during 2020-2022.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoming Li其他文献

Xiaoming Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoming Li', 18)}}的其他基金

Big Data Analytics Emerging Scholar (e-Scholar) Program for Minority Students
少数民族学生大数据分析新兴学者(e-Scholar)计划
  • 批准号:
    10554786
  • 财政年份:
    2023
  • 资助金额:
    $ 10.8万
  • 项目类别:
University of South Carolina Big Data Health Science Conference
南卡罗来纳大学大数据健康科学会议
  • 批准号:
    10751656
  • 财政年份:
    2023
  • 资助金额:
    $ 10.8万
  • 项目类别:
Visualizing and predicting new and late HIV diagnosis in South Carolina: A Big Data approach
可视化和预测南卡罗来纳州新的和晚期的艾滋病毒诊断:大数据方法
  • 批准号:
    10815140
  • 财政年份:
    2023
  • 资助金额:
    $ 10.8万
  • 项目类别:
Informatics Approach to Identification and Deep Phenotyping of PASC Cases
PASC 病例识别和深度表型分析的信息学方法
  • 批准号:
    10574753
  • 财政年份:
    2022
  • 资助金额:
    $ 10.8万
  • 项目类别:
Utilizing All of Us data to examine the impact of COVID-19 on mental health among people living with HIV
利用 All of Us 数据研究 COVID-19 对 HIV 感染者心理健康的影响
  • 批准号:
    10657875
  • 财政年份:
    2022
  • 资助金额:
    $ 10.8万
  • 项目类别:
Curating a Knowledge Base for Individuals with Coinfection of HIV and SARS-CoV-2: EHR-based Data Mining
为 HIV 和 SARS-CoV-2 混合感染者打造知识库:基于 EHR 的数据挖掘
  • 批准号:
    10481286
  • 财政年份:
    2022
  • 资助金额:
    $ 10.8万
  • 项目类别:
Informatics Approach to Identification and Deep Phenotyping of PASC Cases
PASC 病例识别和深度表型分析的信息学方法
  • 批准号:
    10696087
  • 财政年份:
    2022
  • 资助金额:
    $ 10.8万
  • 项目类别:
Curating a Knowledge Base for Individuals with Coinfection of HIV and SARS-CoV-2: EHR-based Data Mining
为 HIV 和 SARS-CoV-2 混合感染者打造知识库:基于 EHR 的数据挖掘
  • 批准号:
    10665078
  • 财政年份:
    2022
  • 资助金额:
    $ 10.8万
  • 项目类别:
Big Data Health Science Fellow Program in Infectious Disease Research
传染病研究大数据健康科学研究生计划
  • 批准号:
    10666508
  • 财政年份:
    2021
  • 资助金额:
    $ 10.8万
  • 项目类别:
Big Data Health Science Fellow Program in Infectious Disease Research
传染病研究大数据健康科学研究生计划
  • 批准号:
    10311679
  • 财政年份:
    2021
  • 资助金额:
    $ 10.8万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了