NEAR-IR SPECTRA OF LIPOPROTEINS AND APOLIPOPROTEINS
脂蛋白和载脂蛋白的近红外光谱
基本信息
- 批准号:2221953
- 负责人:
- 金额:$ 10.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-04-01 至 1996-03-31
- 项目状态:已结题
- 来源:
- 关键词:apolipoproteins artificial intelligence bioengineering /biomedical engineering biomedical automation blood chemistry blood lipoprotein cholesterol computer assisted diagnosis disease /disorder proneness /risk fiber optics high density lipoproteins human tissue infrared spectrometry low density lipoprotein mass screening parallel processing statistics /biometry supercomputer
项目摘要
Virtually every organic compound, including lipoproteins and
apolipoproteins, has a near-IR spectrum that distinguishes it from other
compounds. Near-IR spectrometry can be employed profitably in the analysis
of serum lipoproteins and cholesterol. Cholesterol is carried in a wide
variety of lipoprotein particles, including high-density lipoprotein (HDL)
and low-density lipoprotein (LDL) particles. Accurate analysis of serum
cholesterol is essential for identification of individuals at risk for
arteriosclerotic cardiovascular disease and for implementation of effective
therapeutic regimens. Conventional analytical approaches allow
discrimination between total cholesterol and the principal forms in which
cholesterol is transported in the blood, HDL and LDL. However, these
methods are limited on several accounts. First, in many laboratories the
analytical methods are fraught with error; it has been reported that up to
33% of the reported HDL values are inaccurate. Second, exceedingly wide
interassay variability has prompted some investigators to suggest that up
to ten replicate analyses may be necessary to obtain a meaningful result.
Finally, the conventional methods provide no information about
apolipoproteins (A-I, A-II, B-100) which have been touted as more sensitive
predictors of cardiovascular risk than either cholesterol, HDL or LDL.
Against this background, we now propose a rapid, novel method of serum
lipoprotein determination based on near-IR spectrometry with the potential
to increase the accuracy of cholesterol measurement, to permit
determination of apolipoproteins along with HDL and LDL, and to
dramatically improve the cost-effectiveness of strategies for widespread
cholesterol screening.
This proposal will test the following hypotheses: (1) that near-IR
spectrometry is capable of differentiating among cholesterol, HDL, LDL, and
apolipoproteins A-I, A-II, and B in human sera, and capable of quantifying
these analytes rapidly and simultaneously, (2) that a new parallel
supercomputer method provides more accurate analyses than existing pattern-
recognition techniques, (3) that orbital asymmetry in calibration leads to
misidentified samples that must be reclassified to achieve adequate
spectral assimilation and accurate multicomponent serum analysis (4) that
the near-IR/parallel computer method provides accurate assays of
lipoproteins and apolipoproteins in whole blood as well as serum (5) that
hyphenation of near-IR and acoustic-resonance spectrometries yields
improved analyses of lipoproteins and apolipoproteins with fewer
misclassified samples.
几乎所有的有机化合物,包括脂蛋白和
载脂蛋白,有一个近红外光谱,区分它与其他
化合物. 近红外光谱法可有效地用于分析
血清脂蛋白和胆固醇。 胆固醇是由广泛的
各种脂蛋白颗粒,包括高密度脂蛋白(HDL)
和低密度脂蛋白(LDL)颗粒。 准确分析血清
胆固醇是识别个体风险的关键,
动脉粥样硬化性心血管疾病和实施有效的
治疗方案。 传统的分析方法允许
总胆固醇和主要形式之间的区别,
胆固醇在血液中运输,高密度脂蛋白和低密度脂蛋白。 但这些
方法在几个方面受到限制。 首先,在许多实验室中,
分析方法充满了错误;据报道,
报告的HDL值中有33%不准确。 第二,非常广泛
分析间的变异性促使一些研究人员提出,
为了获得有意义的结果,可能需要进行10次重复分析。
最后,常规方法不提供关于以下的信息:
载脂蛋白(A-I,A-II,B-100),这些蛋白被吹捧为更敏感
心血管风险的预测因子,而不是胆固醇、HDL或LDL。
在此背景下,我们现在提出一种快速,新颖的方法,血清
近红外光谱法测定脂蛋白
为了提高胆固醇测量的准确性,
载脂蛋白沿着与HDL和LDL的测定,
大幅度提高战略的成本效益,
胆固醇筛查
该建议将测试以下假设:(1)近红外
光谱法能够区分胆固醇、HDL、LDL和胆固醇。
人血清中的载脂蛋白A-I、A-II和B,并且能够定量
快速、同时地分析这些分析物,(2)新的平行
超级计算机方法提供了比现有模式更精确的分析,
识别技术,(3)轨道不对称校准导致
必须重新分类的错误识别样本,
光谱同化和精确多组分血清分析(4),
近红外/并行计算机方法提供了精确的分析,
全血和血清中的脂蛋白和载脂蛋白(5),
近红外和声共振光谱联用产生
脂蛋白和载脂蛋白的改进分析,
错误分类的样本
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT A LODDER其他文献
ROBERT A LODDER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT A LODDER', 18)}}的其他基金
NEAR-IR SPECTRA OF LIPOPROTEINS AND APOLIPOPROTEINS
脂蛋白和载脂蛋白的近红外光谱
- 批准号:
2221954 - 财政年份:1991
- 资助金额:
$ 10.68万 - 项目类别:
NEAR-IR SPECTRA OF LIPOPROTEINS AND APOLIPOPROTEINS
脂蛋白和载脂蛋白的近红外光谱
- 批准号:
3473231 - 财政年份:1991
- 资助金额:
$ 10.68万 - 项目类别:
NEAR-IR SPECTRA OF LIPOPROTEINS AND APOLIPOPROTEINS
脂蛋白和载脂蛋白的近红外光谱
- 批准号:
3473230 - 财政年份:1991
- 资助金额:
$ 10.68万 - 项目类别:
NEAR-IR SPECTRA OF LIPOPROTEINS AND APOLIPOPROTEINS
脂蛋白和载脂蛋白的近红外光谱
- 批准号:
3473229 - 财政年份:1991
- 资助金额:
$ 10.68万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 10.68万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 10.68万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 10.68万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 10.68万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 10.68万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 10.68万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 10.68万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 10.68万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 10.68万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 10.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




