A Context-Sensitive Teleconsultation Infrastructure

上下文敏感的远程会诊基础设施

基本信息

项目摘要

DESCRIPTION (provided by applicant): Consultation with appropriate specialists improves the quality of healthcare, particularly in patients with complicated cases or chronic illnesses. And for the majority of such patients, specialists use imaging studies (e.g., MR, CT) to objectively document the disease process (e.g., a cancer patient on chemotherapy). However, specialists are generally not available in all communities, tending to be concentrated in academic/specialty centers. Thus, to facilitate the routine use of teleconsultations for patients when specialists are not locally present: 1) the images captured to document the patient's condition must be incorporated into the medical record to enable proper review; and 2) the remote consultant should only receive pertinent parts of the medical record to streamline the consultation process. This proposal is focused on developing and testing a "context-sensitive" telehealth infrastructure based on: 1) automated incorporation of clinical context (patient presentation and referring physician hypothesis) to focus the consultation process; 2) a knowledge-base derived from data mining of natural language processing (NLP) results, mapping patient presentation to select an appropriate imaging study based on anatomical region and imaging parameters; and 3) automated selection of key anatomical structures in the acquired imaging study through the use of a contrast-customizable atlas and rigid body/deformable registration algorithms. Collectively, these technologies will allow context-sensitive, automated summarization of medical records for telehealth in a real-world environment. The proposed technologies will be implemented for neurological and musculoskeletal domains, two areas that are MR imaging intensive. Technical evaluation will be performed with experts serving as the reference standard and will focus on measuring: 1) the accuracy of the corpus based, NLP-guided knowledge-base in selecting relevant anatomical structures; and 2) the accuracy of anatomical structure delineation using the customizable atlas registration methods. Clinical evaluation will be conducted in a real-world teleconsultation environment in a before/after study design using two performance metrics: 1) the time required for consultations; and 2) the effect on the quality of the consultations.
描述(由申请人提供):咨询适当的专家,提高医疗质量,特别是在复杂的情况下或慢性疾病的患者。对于大多数这样的患者,专家使用成像研究(例如,MR、CT)客观记录疾病过程(例如,正在接受化疗的癌症患者)。然而,并非所有社区都有专家,他们往往集中在学术/专业中心。因此,为了在专家不在本地时促进对患者的远程咨询的常规使用:1)为了记录患者的状况而捕获的图像必须被并入到医疗记录中以使得能够进行适当的审查;以及2)远程咨询者应当仅接收医疗记录的相关部分以简化咨询过程。这项建议的重点是开发和测试一个“上下文敏感”的远程医疗基础设施的基础上:1)自动纳入临床背景(患者介绍和转诊医生假设),以集中咨询过程; 2)从自然语言处理(NLP)结果的数据挖掘导出的知识库,基于解剖区域和成像参数映射患者表现以选择适当的成像研究;以及3)通过使用对比度可定制的图谱和刚体/可变形配准算法,在所采集的成像研究中自动选择关键解剖结构。总的来说,这些技术将允许在现实环境中对远程医疗的医疗记录进行上下文敏感的自动总结。拟议的技术将用于神经和肌肉骨骼领域,这两个领域是磁共振成像密集型的。 将以专家作为参考标准进行技术评价,并将重点测量:1)基于语料库的NLP引导知识库在选择相关解剖结构时的准确性; 2)使用可定制图谱配准方法进行解剖结构描绘的准确性。临床评价将在真实世界远程会诊环境中进行,采用研究前/后设计,使用两个性能指标:1)会诊所需的时间; 2)对会诊质量的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HOOSHANG KANGARLOO其他文献

HOOSHANG KANGARLOO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HOOSHANG KANGARLOO', 18)}}的其他基金

An Imaging-based Disease Model for Understanding Bone Health
用于了解骨骼健康的基于成像的疾病模型
  • 批准号:
    7680174
  • 财政年份:
    2008
  • 资助金额:
    $ 38.33万
  • 项目类别:
An Imaging-based Disease Model for Understanding Bone Health
用于了解骨骼健康的基于成像的疾病模型
  • 批准号:
    7626140
  • 财政年份:
    2008
  • 资助金额:
    $ 38.33万
  • 项目类别:
An Imaging-based Disease Model for Understanding Bone Health
用于了解骨骼健康的基于成像的疾病模型
  • 批准号:
    7885400
  • 财政年份:
    2008
  • 资助金额:
    $ 38.33万
  • 项目类别:
A Context-Sensitive Teleconsultation Infrastructure
上下文敏感的远程会诊基础设施
  • 批准号:
    6802269
  • 财政年份:
    2003
  • 资助金额:
    $ 38.33万
  • 项目类别:
Training Program for Imaging Based Medical Informatics
基于影像的医学信息学培训计划
  • 批准号:
    7102635
  • 财政年份:
    2002
  • 资助金额:
    $ 38.33万
  • 项目类别:
Training Program for Imaging Based Medical Informatics
基于影像的医学信息学培训计划
  • 批准号:
    6467933
  • 财政年份:
    2002
  • 资助金额:
    $ 38.33万
  • 项目类别:
Training Program for Imaging Based Medical Informatics
基于影像的医学信息学培训计划
  • 批准号:
    6604918
  • 财政年份:
    2002
  • 资助金额:
    $ 38.33万
  • 项目类别:
Training Program for Imaging Based Medical Informatics
基于影像的医学信息学培训计划
  • 批准号:
    6915694
  • 财政年份:
    2002
  • 资助金额:
    $ 38.33万
  • 项目类别:
Training Program for Imaging Based Medical Informatics
基于影像的医学信息学培训计划
  • 批准号:
    6788828
  • 财政年份:
    2002
  • 资助金额:
    $ 38.33万
  • 项目类别:
OBJECTIFICATION OF MEDICAL FINDINGS--INDIVIDUAL IMAGING PROTOCOLS
医学结果的客观化——个体成像方案
  • 批准号:
    6430472
  • 财政年份:
    2001
  • 资助金额:
    $ 38.33万
  • 项目类别:

相似海外基金

FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
  • 批准号:
    EP/Y036395/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.33万
  • 项目类别:
    Research Grant
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
  • 批准号:
    10764456
  • 财政年份:
    2023
  • 资助金额:
    $ 38.33万
  • 项目类别:
The IDeA State Consortium for a Clinical Research Resource Center: Increasing Clinical Trials in IDeA States through Communication of Opportunities, Effective Marketing, and WorkforceDevelopment
IDeA 州临床研究资源中心联盟:通过机会交流、有效营销和劳动力发展增加 IDeA 州的临床试验
  • 批准号:
    10715568
  • 财政年份:
    2023
  • 资助金额:
    $ 38.33万
  • 项目类别:
The Mayo Clinic NeuroNEXT Clinical Research Site
梅奥诊所 NeuroNEXT 临床研究网站
  • 批准号:
    10743328
  • 财政年份:
    2023
  • 资助金额:
    $ 38.33万
  • 项目类别:
Addressing Underperformance in Clinical Trial Enrollments: Development of a Clinical Trial Toolkit and Expansion of the Clinical Research Footprint
解决临床试验注册表现不佳的问题:开发临床试验工具包并扩大临床研究足迹
  • 批准号:
    10638813
  • 财政年份:
    2023
  • 资助金额:
    $ 38.33万
  • 项目类别:
Improving Multicultural Engagement in Clinical Research through Partnership with Federally Qualified Health Centers and Community Health Worker Programs
通过与联邦合格的健康中心和社区卫生工作者计划合作,改善临床研究中的多元文化参与
  • 批准号:
    10823828
  • 财政年份:
    2023
  • 资助金额:
    $ 38.33万
  • 项目类别:
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
  • 批准号:
    10828665
  • 财政年份:
    2023
  • 资助金额:
    $ 38.33万
  • 项目类别:
Promoting a Culture Of Innovation, Mentorship, Diversity and Opportunity in NCI Sponsored Clinical Research: NCI Research Specialist (Clinician Scientist) Award Application of Janice M. Mehnert, M.D.
在 NCI 资助的临床研究中促进创新、指导、多样性和机会文化:Janice M. Mehnert 医学博士的 NCI 研究专家(临床科学家)奖申请
  • 批准号:
    10721095
  • 财政年份:
    2023
  • 资助金额:
    $ 38.33万
  • 项目类别:
Clinical Research Center for REstoration of NEural-based Function in the Real World (RENEW)
现实世界神经功能恢复临床研究中心 (RENEW)
  • 批准号:
    10795328
  • 财政年份:
    2023
  • 资助金额:
    $ 38.33万
  • 项目类别:
Clinical Research and Academic Success in Obstetrics & Gynecology
产科临床研究和学术成就
  • 批准号:
    10828252
  • 财政年份:
    2023
  • 资助金额:
    $ 38.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了