Telemetric Implantable Intraocular Pressure Sensor Syste

遥测植入式眼压传感器系统

基本信息

  • 批准号:
    6631393
  • 负责人:
  • 金额:
    $ 27.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-05-01 至 2004-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This research will assess the technical feasibility of developing a new and unique miniature ophthalmic lOP sensor, to be retrofitted into the cannula of a conventional Glaucoma Drainage Device and surgically implanted under the sclera for the purpose of continuous measurement and transmission of these lOP readings to a remote receiver. With this technology, physicians will have the ability to measure the effects that medications and other life-style factors have on the lOP of their patients in a real-time and continuous mode. Current technology does not allow for real-time, continuous (24/7, diurnal and nocturnal readings) monitoring of intraocular pressure (lOP) to enable physicians to study, diagnose and more clearly understand the response mechanism relating to lOP that can lead to more effective development and titration of glaucoma medications or other timely therapeutic options. Elevated and fluctuating (lOP) over a 24/7 period is an independent and proven risk factor for eye damage in the short term and glaucoma progressions in the long term, which if left unchecked or unmanaged could lead to blindness. This research is dedicated to developing technologies that assist physicians to more effectively treat the glaucoma patient. With regard to glaucoma, Brian Francis, MD, of the Doheny Eye Institute, has stated that: "lntraocular Pressure (lOP) is the only treatable risk factor known. Three (3) recent NIH clinical trials have shown the importance of IOP control, even in the normal tension glaucoma patient. These are the 1) Normal Tension Glaucoma Study, the 2) Advanced Glaucoma Intervention Study, part 7, and 3) The Ocular Hypertension Treatments Study. The Importance of lOP has been clearly established, and is the gauge by which all current drug and surgical treatments are measured." The initial stage of research and development delineated here will consist of proving the proposed concept by means of a "breadboard design". An original MEMS lOP sensor chip will be designed and fabricated which will employ a capacitive resonance and resistance effect, and the interface electronics materials and electronic chip (ASIC) and other items which form the telemetry signal will be outsourced. Advanced work will involve bonding an lOP MEMS sensor to the electronic chip (ASIC) and integrating it into a conventional Glaucoma Drainage Device (GDD) for implantation into humans. For this project, a computer designed silicon, piezoelectric pressure sensor and computer simulation of the lOP sensor and process will be developed along with a bench-top proof-of-concept prototype and functional process of 1) the lOP sensor, 2) the ASIC chip signal processor, and 3) the remote hand control device. Validations will be performed in the computer simulation of the MEMS pressure sensor chip and its ability to detect the pressure over the expected eye pressure ranges (0-40 mm Hg) from a remote distance of 4-6 feet. The bench-top model will demonstrate three functions, which will be initiated and activated remotely, A) intraocular pressure sensing, B) signal processing of those pressures using an inductance energy field, and C) transmission of the pressure readings to a remote device. Two extensive reports will be generated, i) a pressure sensor design, ASIC design, and MEMS lOP specification sheet with drawings, and I1)documentation of the experiment using the prototype configuration and commonly accepted intraocular testing rigs used to calibrate commercially available tonometers, that can lead researchers to develop more effective pharmaceuticals or therapeutic protocols for the glaucoma patent.
描述(由申请人提供):本研究将评估开发一种新型独特的微型眼科IOP传感器的技术可行性,该传感器将被改装到传统青光眼引流装置的套管中,并通过手术植入巩膜下,以连续测量这些IOP读数并将其传输到远程接收器。有了这项技术,医生将能够以实时和连续的模式测量药物和其他生活方式因素对患者IOP的影响。 目前的技术不允许眼内压(IOP)的实时、连续(24/7,昼夜读数)监测,以使医生能够研究、诊断和更清楚地理解与IOP相关的响应机制,这可以导致青光眼药物或其他及时治疗选择的更有效的开发和滴定。在24/7的时间段内升高和波动(IOP)是短期内眼损伤和长期青光眼进展的独立和经证实的风险因素,如果不加控制或不加管理,可能导致失明。这项研究致力于开发技术,帮助医生更有效地治疗青光眼患者。 关于青光眼,Doheny眼科研究所的Brian弗朗西斯医学博士指出:“眼内压(IOP)是已知的唯一可治疗的风险因素。最近的三(3)项NIH临床试验显示了IOP控制的重要性,即使在正常眼压性青光眼患者中也是如此。这些是1)正常眼压性青光眼研究,2)晚期青光眼干预研究,第7部分,和3)眼部 高血压治疗研究。IOP的重要性已经明确确立,并且是衡量所有当前药物和手术治疗的标准。“这里描述的研究和开发的初始阶段将包括通过“实验板设计”来证明所提出的概念。将设计和制造原始MEMS lOP传感器芯片,其将采用电容谐振和电阻效应,并且接口电子材料和电子芯片(ASIC)以及 其他构成遥测信号的项目将外包。先进的工作将涉及将IOP MEMS传感器与电子芯片(ASIC)结合,并将其集成到传统的青光眼引流装置(GDD)中,以植入人体。对于本项目,将沿着开发计算机设计的硅压电压力传感器以及lOP传感器和过程的计算机模拟,以及1)lOP传感器、2)ASIC芯片信号处理器和3)远程手控装置的台式概念验证原型和功能过程。将在MEMS压力传感器芯片的计算机模拟及其从4-6英尺的远程距离检测预期眼压范围(0-40 mm Hg)内的压力的能力中进行确认。台式模型将演示三种功能,它们将被远程启动和激活,A)眼内压感测,B)使用电感能量场对这些压力进行信号处理,以及C)压力读数的传输 远程设备将生成两个广泛的报告,i)压力传感器设计、ASIC设计和MEMS IOP规格表(带有图纸),以及I1)使用原型配置和用于校准市售眼压计的普遍接受的眼内测试装置的实验的文档,其可以引导研究人员开发用于青光眼专利的更有效的药物或治疗方案。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prevention of Staphylococcus aureus endophthalmitis with topical gatifloxacin in a rabbit prophylaxis model.
在兔预防模型中用局部加替沙星预防金黄色葡萄球菌眼内炎。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lawrence Wan其他文献

Lawrence Wan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lawrence Wan', 18)}}的其他基金

Wireless Implantable Intraocular Pressure Sensor System
无线植入式眼压传感器系统
  • 批准号:
    7503341
  • 财政年份:
    2003
  • 资助金额:
    $ 27.23万
  • 项目类别:
Wireless Implantable Intraocular Pressure Sensor System
无线植入式眼压传感器系统
  • 批准号:
    7215301
  • 财政年份:
    2003
  • 资助金额:
    $ 27.23万
  • 项目类别:

相似海外基金

Towards more complete models and improved computer simulation tools for Liquid Composite Molding (LCM)
为液体复合成型 (LCM) 打造更完整的模型和改进的计算机模拟工具
  • 批准号:
    RGPIN-2022-04495
  • 财政年份:
    2022
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Discovery Grants Program - Individual
Computer simulation of yeast metabolism by data-driven ensemble modeling
通过数据驱动的集成建模对酵母代谢进行计算机模拟
  • 批准号:
    22H01879
  • 财政年份:
    2022
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Computer simulation studies of crystallization in structured ternary fluids
结构三元流体结晶的计算机模拟研究
  • 批准号:
    2717178
  • 财政年份:
    2022
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Studentship
Computer simulation of confined polymers and 2D catenated-ring networks
受限聚合物和二维链环网络的计算机模拟
  • 批准号:
    RGPIN-2022-03086
  • 财政年份:
    2022
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Discovery Grants Program - Individual
A computer simulation study to unveil fluid behavior of the beam-on target of a fusion neutron source
揭示聚变中子源射束目标流体行为的计算机模拟研究
  • 批准号:
    22K03579
  • 财政年份:
    2022
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Aggregation process of amyloid-beta peptides on a membrane on a lipid membrane studied by computer simulation
计算机模拟研究淀粉样β肽在脂膜上的聚集过程
  • 批准号:
    21K06040
  • 财政年份:
    2021
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improving cardiac valve implant outcomes with advanced computer simulation
通过先进的计算机模拟改善心脏瓣膜植入效果
  • 批准号:
    nhmrc : 2002892
  • 财政年份:
    2021
  • 资助金额:
    $ 27.23万
  • 项目类别:
    Ideas Grants
Computer simulation of cell polarization and migration in 3D
3D 细胞极化和迁移的计算机模拟
  • 批准号:
    563522-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 27.23万
  • 项目类别:
    University Undergraduate Student Research Awards
Computer Simulation of a Semiflexible Polymer Confined to a Dual-Nanocavity Geometry
限制在双纳米腔几何结构中的半柔性聚合物的计算机模拟
  • 批准号:
    563544-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 27.23万
  • 项目类别:
    University Undergraduate Student Research Awards
Diversity Research Supplement for Combining Experiments and Computer Simulation to Improve the Stem Cell Differentiation Process
结合实验和计算机模拟改善干细胞分化过程的多样性研究补充
  • 批准号:
    10550022
  • 财政年份:
    2021
  • 资助金额:
    $ 27.23万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了