Neural Substrates Controlling Metabolic and Reproductive State

控制代谢和生殖状态的神经基质

基本信息

项目摘要

PROJECT SUMMARY The goal of this project is to find new neural substrates governing metabolic state in Drosophila melanogaster. Success of organisms through evolutionary time depends upon their ability to optimize utilization of resources. When environments become unfavorable, animals will preserve energy and attenuate reproduction. This strategy requires perception and assessment of a complex environment, which is an ancient role of the nervous system. Many metabolic disorders in humans, such as polycystic ovarian syndrome, remain incompletely understood, but probing an underlying role for the nervous system remains a monumental challenge. Here, we propose to exploit the genetic accessibility and cellular resolution experiments possible in the fly, Drosophila melanogaster, to explore how the brain sets metabolic and reproductive state. Given the importance of environmental adaptation, we expect the biological principles underlying these strategies to be highly conserved among motile animals with nervous systems, including flies and humans. The Meiselman lab seeks to establish a network map for the nervous system components that permit the fly brain to change metabolic state, thereby laying groundwork for investigations in organisms with brains of higher complexity. During my postdoc I showed that DN3 circadian neurons and expression of their operant neuropeptide, Allatostatin-C (AstC), are temperature-sensitive and terminate cold-induced reproductive arrest when warm temperatures return. In this proposal, we will find the minimal neural subset that depends on temperature information from DN3s and adjusts reproductive output, then examine how their innate activity responds to temperature change with calcium imaging (Aim 1.1). Next, we will determine if the minimal subset controlling reproduction causes changes to rhythmicity, feeding, and metabolic rate (Aim 1.2). We will then investigate a second subset of neurons that depress reproduction when activated, heart-innervating LkAC neurons. We will assess their role in modulation of metabolism (Aim 2.1) and examine if their activity affects heartbeat (Aim 2.2). Finally, we will find the molecular (Aim 3.1) and neural (Aim 3.2) substrates that attenuate reproduction in response to noxious percepts (hunger, thirst, and high heat). In sum, this work will offer comprehensive insight into how the nervous system integrates sensory information to control metabolic state and reproduction. This project will present opportunities for diverse students at a minority-serving institution (UNLV) to engage in research which utilizes cutting-edge techniques. My co-mentors Dr. Mariana Wolfner and Dr. Frank van Breukelen, and collaborators Drs. Allen Gibbs and Nilay Yapici collectively have world-leading expertise in fly genetics, metabolism, and neurobiology. Their support will allow me to foster a successful laboratory environment wherein I can offer top notch mentorship to my students and reach my career goals. In addition to critical technical skills, my mentors will offer me guidance that will allow me to establish a successful extramurally funded research program, and to unveil new insights into the interface between brain and metabolic state.
项目概要 该项目的目标是寻找控制果蝇代谢状态的新神经基质。 生物体在进化过程中的成功取决于它们优化资源利用的能力。 当环境变得不利时,动物会保存能量并削弱繁殖能力。这个策略 需要对复杂环境的感知和评估,这是神经系统的一个古老的作用。 人类的许多代谢紊乱,例如多囊卵巢综合症,仍然不完全清楚, 但探索神经系统的潜在作用仍然是一个巨大的挑战。在此,我们建议 利用果蝇中可能进行的遗传可及性和细胞分辨率实验, 探索大脑如何设置代谢和生殖状态。鉴于环境的重要性 适应,我们期望这些策略背后的生物学原理在运动中高度保守 有神经系统的动物,包括苍蝇和人类。梅塞尔曼实验室寻求建立一个网络图 神经系统组件允许果蝇大脑改变代谢状态,从而奠定 为研究具有更高复杂性大脑的生物体奠定了基础。 在我的博士后期间,我展示了 DN3 昼夜节律神经元及其操作性神经肽的表达, Allatostatin-C (AstC) 对温度敏感,在温暖时终止寒冷引起的生殖停滞 气温回归。在这个提案中,我们将找到依赖于温度的最小神经子集 来自 DN3 的信息并调整生殖输出,然后检查它们的先天活动如何响应 钙成像的温度变化(目标 1.1)。接下来,我们将确定最小子集是否控制 繁殖会导致节律、摄食和代谢率发生变化(目标 1.2)。然后我们将调查一个 第二个神经元子集,当激活心脏支配的 LkAC 神经元时会抑制繁殖。我们将 评估它们在代谢调节中的作用(目标 2.1)并检查它们的活动是否影响心跳(目标 2.2)。 最后,我们将找到削弱繁殖的分子(目标 3.1)和神经(目标 3.2)底物 对有害知觉(饥饿、口渴和高热)的反应。总之,这项工作将提供全面的见解 研究神经系统如何整合感觉信息来控制代谢状态和繁殖。 该项目将为少数族裔服务机构 (UNLV) 的多元化学生提供机会 从事利用尖端技术的研究。我的搭档玛丽安娜·沃尔夫纳博士和弗兰克博士 范布罗克伦(van Breukelen)和合作者博士。艾伦·吉布斯 (Allen Gibbs) 和尼莱·亚皮奇 (Nilay Yapici) 共同拥有世界领先的专业知识 果蝇遗传学、新陈代谢和神经生物学。他们的支持将使我能够建立一个成功的实验室 我可以为我的学生提供一流的指导并实现我的职业目标。此外 关键的技术技能,我的导师将为我提供指导,使我能够建立成功的校外 资助的研究计划,并揭示大脑和代谢状态之间的界面的新见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Ramiah Meiselman其他文献

Matthew Ramiah Meiselman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了