Understanding the neuronal mechanisms of closed-loop olfaction
了解闭环嗅觉的神经机制
基本信息
- 批准号:10708995
- 负责人:
- 金额:$ 55.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-22 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Adaptive BehaviorsAnteriorAttentionAuditoryAuditory areaBehavioralBrainCodeCompensationCouplingDataEnvironmentEsthesiaFaceFeelingFiberFutureGeneticHeadHead MovementsIndividualInvestigationKnowledgeLabelLaboratoriesLateralLearningLinkLocationMapsModalityModelingModernizationMonitorMotorMovementMusNatureNeuronsOdorsOlfactory CortexOlfactory PathwaysPerceptionPhotometryProbabilityProcessPyramidal CellsReportingRewardsRoleSamplingSensoryShapesSignal TransductionSmell PerceptionSomatosensory CortexSourceSpecificityStimulusTechniquesTestingUpdateVertebratesVisualalertnessarea striatacell cortexcell typeexpectationexperienceexperimental studyflexibilitygenetic signatureinsightlight weightneuralneural circuitnovelolfactory nucleioptogeneticspredictive modelingresponsesensory inputsomatosensorytool
项目摘要
Project Summary
In nature, sensory perception and motor processing operate in closed-loop. Self-generated movements impact
sensory input, and sensory inputs guide future motor commands. Through experience, the brain may learn the
reciprocal relationship between sensory inputs and movements in the form of generative sensorimotor models
that predict the sensory consequences of upcoming actions. In vertebrates, olfaction is intrinsically linked to
motor action through sniffing, and just as for other sensory modalities, via head and body movements. Due to
technical challenges, however, most studies in laboratory settings have probed olfactory processing during
passive odor sampling. Even when investigating odor-driven navigation, the effect of movements on odor
responses has rarely been analyzed. Here we will test the central hypothesis that, in closed-loop olfaction,
mice generate olfacto-motor predictions on the sensory consequences of their actions, which further guide odor
sampling movements. At the circuit level, we hypothesize that specific olfactory cortex circuits represent olfacto-
motor prediction errors, computed by comparing odor input and movement-related predictions of the expected
odor input. We plan to test these hypotheses using a novel closed-loop odor localization task (Smellocator)
developed in our group, together with a rich repertoire of sensorimotor perturbations, state-of-the-art recordings
and cell-type circuit analysis tools with increasing levels of specificity.
● To this end, we will first investigate whether under closed-loop coupling of movements and odor sensing, mice
detect olfacto-motor errors, and further compensate for them. In the Smellocator task, head-fixed mice learn to
steer a lightweight lever with their paws to control the lateral location of an odor source according to a fixed-gain
sensorimotor mapping rule. In catch trials, we will transiently alter the relationship between lever movement and
odor displacement via a range of precise, unexpected sensorimotor perturbations. Preliminary data indicate that
expert mice successfully compute sensorimotor prediction errors, and quickly engage in fine corrective
movements triggered by these perturbations in an individual specific manner.
• Then, we will investigate whether the olfactory cortex (piriform vs. anterior olfactory nucleus) represents olfacto-
motor prediction errors in face of transient surprises. We will check whether brief sensorimotor perturbations
trigger sudden changes in cortical activity (mismatch responses). We will refine our analysis to determine if
different semilunar and pyramidal cells types (e.g. Netrin+, Cux1+, Tbr1+, Tle4+) represent primarily sensory
inputs vs. olfacto-motor errors by combining distributed recordings and modern genetic labeling strategies.
• Finally, we will investigate whether the olfactory cortex enables adaptation in the presence of persistent olfacto-
motor errors. We will change the sensorimotor mapping rules in blocks of trials, and across behavioral sessions,
and compare the roles of specific cell types in supporting sensorimotor adaptation taking advantage of flexible
optogenetic suppression strategies.
项目摘要
在自然界中,感觉知觉和运动处理是在闭合环路中运行的。自产生的运动影响
感觉输入和感觉输入指导着未来的运动指令。通过经验,大脑可能会学习到
以生成性感觉运动模型为形式的感觉输入与运动的相互关系
来预测即将到来的行动的感官后果。在脊椎动物中,嗅觉本质上与
通过嗅觉进行运动,就像其他感官方式一样,通过头部和身体运动。由于
然而,技术挑战,大多数实验室环境下的研究都探索了嗅觉加工过程
被动气味采样。即使在调查气味驱动的导航时,移动对气味的影响
很少有人对这些回应进行分析。在这里,我们将检验中心假设,在闭合嗅觉中,
老鼠对其行为的感官后果产生嗅觉运动预测,从而进一步引导气味
采样动作。在电路水平上,我们假设特定的嗅皮层电路代表事实-
马达预测误差,通过比较气味输入和预期运动相关的预测来计算
气味输入。我们计划使用一种新的闭环气味定位任务(SmelLocator)来测试这些假设
在我们组开发的,连同丰富的感觉运动扰动曲目,最先进的录音
以及细胞类型的电路分析工具,具有越来越高的特异性。
为此,我们将首先调查在运动和气味感觉的闭环耦合下,小鼠
检测实际电机错误,并进一步对其进行补偿。在SmelLocator任务中,头部固定的小鼠学习
用它们的爪子操纵轻量级杠杆,根据固定的增益控制气味源的横向位置
感应器运动映射规则。在渔获试验中,我们将暂时改变杠杆移动和
通过一系列精确的、意想不到的感应器运动扰动进行气味置换。初步数据显示,
专家老鼠成功地计算出感觉运动预测误差,并迅速进行精细校正
由这些扰动以个体特定的方式触发的运动。
·然后,我们将调查嗅皮层(梨状核与前嗅核)是否代表嗅觉-
面对瞬时意外时的马达预测误差。我们将检查是否存在短暂的感觉运动扰动
触发皮质活动的突然变化(失配反应)。我们将改进我们的分析以确定
不同类型的半月和锥体细胞(如Netrin+、CUX1+、Tbr1+、Tle4+)主要代表感觉
通过结合分布式记录和现代遗传标记策略,将输入与实际运动错误进行比较。
·最后,我们将研究嗅觉皮质是否能够在持续的嗅觉-
马达故障。我们将在多个试验和跨行为会话中改变感觉运动映射规则,
并比较了特定细胞类型在支持感觉运动适应方面的作用,利用灵活的
光遗传抑制策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dinu Florentin ALBEANU其他文献
Dinu Florentin ALBEANU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dinu Florentin ALBEANU', 18)}}的其他基金
Understanding the neuronal mechanisms of closed-loop olfaction
了解闭环嗅觉的神经机制
- 批准号:
10578521 - 财政年份:2022
- 资助金额:
$ 55.18万 - 项目类别:
Understanding the Logic of the Brain-Wide Olfactory Bulb Projectome
了解全脑嗅球投影组的逻辑
- 批准号:
10597059 - 财政年份:2019
- 资助金额:
$ 55.18万 - 项目类别:
Understanding the logic of the brain-wide olfactory bulb projectome
了解全脑嗅球投射组的逻辑
- 批准号:
10378557 - 财政年份:2019
- 资助金额:
$ 55.18万 - 项目类别:
A high-throughput sequencing and imaging approach to understand the functional basis of olfaction
用于了解嗅觉功能基础的高通量测序和成像方法
- 批准号:
10468179 - 财政年份:2018
- 资助金额:
$ 55.18万 - 项目类别:
Understanding the roles of cortico-bulbar feedback in odor identification
了解皮质球反馈在气味识别中的作用
- 批准号:
9217633 - 财政年份:2016
- 资助金额:
$ 55.18万 - 项目类别:
Understanding the roles of cortico-bulbar feedback in odor identification
了解皮质球反馈在气味识别中的作用
- 批准号:
9106954 - 财政年份:2016
- 资助金额:
$ 55.18万 - 项目类别:
Short axon cells implement gain control in the mouse olfactory bulb
短轴突细胞在小鼠嗅球中实现增益控制
- 批准号:
8581548 - 财政年份:2013
- 资助金额:
$ 55.18万 - 项目类别:
Short axon cells implement gain control in the mouse olfactory bulb
短轴突细胞在小鼠嗅球中实现增益控制
- 批准号:
8688984 - 财政年份:2013
- 资助金额:
$ 55.18万 - 项目类别:
Electrophysiological Analysis of Olfactory Representations in Drosophila
果蝇嗅觉表征的电生理分析
- 批准号:
9054828 - 财政年份:2010
- 资助金额:
$ 55.18万 - 项目类别:
Electrophysiological Analysis of Olfactory Representations in Drosophila
果蝇嗅觉表征的电生理分析
- 批准号:
8888697 - 财政年份:2010
- 资助金额:
$ 55.18万 - 项目类别:
相似海外基金
Impact of tissue resident memory T cells on the neuro-immune pathophysiology of anterior eye disease
组织驻留记忆 T 细胞对前眼疾病神经免疫病理生理学的影响
- 批准号:
10556857 - 财政年份:2023
- 资助金额:
$ 55.18万 - 项目类别:
Fear and anxiety circuit mechanisms in anterior hypothalamic nucleus
下丘脑前核的恐惧和焦虑环路机制
- 批准号:
10789153 - 财政年份:2023
- 资助金额:
$ 55.18万 - 项目类别:
Elucidating signaling networks in Anterior Segment development, repair and diseases
阐明眼前节发育、修复和疾病中的信号网络
- 批准号:
10718122 - 财政年份:2023
- 资助金额:
$ 55.18万 - 项目类别:
The Intimate Interplay Between Keratoconus, Sex Hormones, and the Anterior Pituitary
圆锥角膜、性激素和垂体前叶之间的密切相互作用
- 批准号:
10746247 - 财政年份:2023
- 资助金额:
$ 55.18万 - 项目类别:
Anterior Insula Projections for Alcohol Drinking/Anxiety Interactions in Female and Male Rats
雌性和雄性大鼠饮酒/焦虑相互作用的前岛叶预测
- 批准号:
10608759 - 财政年份:2023
- 资助金额:
$ 55.18万 - 项目类别:
Impact of tissue resident memory T cells on the neuro-immunepathophysiology of anterior eye disease
组织驻留记忆 T 细胞对前眼疾病神经免疫病理生理学的影响
- 批准号:
10804810 - 财政年份:2023
- 资助金额:
$ 55.18万 - 项目类别:
Investigation of the effect of anterior eye shape on myopia progression due to prolonged near work.
研究因长时间近距离工作而导致的前眼形状对近视进展的影响。
- 批准号:
23K09063 - 财政年份:2023
- 资助金额:
$ 55.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation and characterization of anterior pituitary stem cells from human pluripotent stem cells
人多能干细胞垂体前叶干细胞的产生和表征
- 批准号:
23K08005 - 财政年份:2023
- 资助金额:
$ 55.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Anterior cruciate ligament injury: towards a gendered environmental approach
前十字韧带损伤:走向性别环境方法
- 批准号:
485090 - 财政年份:2023
- 资助金额:
$ 55.18万 - 项目类别:
Operating Grants
EASI-TOC: Endovascular Acute Stroke Intervention-Tandem OCclusion: atrial of acute cervical internal carotid artery stenting during endovascularthrombectomy for anterior circulation stroke
EASI-TOC:血管内急性卒中干预-串联闭塞:前循环卒中血管内血栓切除术期间急性颈内动脉心房支架置入术
- 批准号:
490056 - 财政年份:2023
- 资助金额:
$ 55.18万 - 项目类别:
Operating Grants














{{item.name}}会员




