Physical Mechanisms of Hemostasis by Intense Ultrasound

强超声止血的物理机制

基本信息

  • 批准号:
    6687273
  • 负责人:
  • 金额:
    $ 3.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-12-01 至 2005-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant) High intensity focused ultrasound (HIFU) is an exciting new therapeutic technology with numerous significant clinical applications. It is also one of the most promising modern interdisciplinary areas of physics and medicine. HIFU enables delivery of a relatively large amount of energy to a small region of tissue with little effect on the surrounding areas. The associated high acoustic pressure and heat deposition of HIFU results in tissue necrosis and blood coagulation. This ultrasound impact can be used to ablate tumors, pre-coagulate a region of an organ to be surgically resectioned, and obtain hemostasis in hemorrhaging parenchyma or damaged vessels. The tissue can be treated not only on the organ surface, but also noninvasively deep within the organ itself. The work in the parent grant has demonstrated the clinical applicability and engineering manifestation of HIFU in achieving rapid hemostasis in vivo, with models of organ and blood vessels injuries. The research team of bioengineers and surgeons from the Center of Industrial and Medical Ultrasound (CIMU) of the University of Washington has shown the efficacy of the treatment to stop bleeding in open liver and punctured vessels. The work has identified specific areas where lack of understanding and knowledge of physical mechanisms involved in ultrasound/tissue interaction inhibit application. These include better understanding thermal effects, cavitation, streaming, effect of acoustic nonlinearity that play important roles in arresting bleeding. Design and optimization of HIFU probes require characterization of transducers to predict ultrasound field, and its impact on blood and tissue. The objective of the proposed FIRCA grant is to address some of these areas, to provide insight into the physical mechanisms involved in HIFU hemostasis, and to provide numerical and experimental tools based on this knowledge for optimization, planning, and monitoring of treatment. Theoretical and numerical models for the nonlinear acoustic field produced by HIFU probes will be developed and coupled with the temperature model, bubble dynamics, and streaming. Experiments will be performed in tissue mimicking liquids and phantoms and compared with the theoretical results in order to reveal the importance of basic physical effects in halting the bleeding jet and accelerating hemostasis. This research will be done primarily in Russia at the Department of Acoustics, Physics Faculty of the Moscow State University in collaboration with Vera A. Khokhlova and her colleagues as an extension of the parent NIH grant # R01 EB 00292-03.
描述(由申请人提供) 高强度聚焦超声(HIFU)是一种令人兴奋的新的治疗技术,具有许多重要的临床应用。它也是物理学和医学最有前途的现代交叉领域之一。HIFU能够将相对大量的能量输送到组织的小区域,而对周围区域的影响很小。HIFU的高声压和热沉积导致组织坏死和血液凝固。这种超声冲击可用于消融肿瘤,预凝固待手术切除的器官区域,并在扩张的实质或受损血管中实现止血。该组织不仅可以在器官表面进行治疗,还可以在器官本身的深处进行非侵入性治疗。母基金的工作证明了HIFU在体内实现快速止血的临床适用性和工程表现,以及器官和血管损伤模型。来自华盛顿大学工业和医疗超声中心(CIMU)的生物工程师和外科医生研究小组已经证明了这种治疗方法在阻止开放肝脏和穿刺血管出血方面的疗效。这项工作已经确定了具体的领域,缺乏理解和知识的物理机制参与超声/组织相互作用抑制应用。这些包括更好地理解热效应,空化,流动,声学非线性效应,在止血中发挥重要作用。HIFU探头的设计和优化需要对换能器进行表征,以预测超声场及其对血液和组织的影响。拟议的FIRCA赠款的目的是解决这些领域中的一些问题,深入了解HIFU止血所涉及的物理机制,并提供基于这些知识的数值和实验工具,用于优化,规划和监测治疗。将开发由HIFU探头产生的非线性声场的理论和数值模型,并将其与温度模型、气泡动力学和流耦合。实验将在组织模拟液体和幻影中进行,并与理论结果进行比较,以揭示基本物理效应在阻止出血射流和加速止血中的重要性。这项研究将主要在俄罗斯莫斯科州立大学物理系声学系与Vera A. Khokhlova和她的同事作为NIH母基金#R 01 EB 00292-03的延伸。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL R BAILEY其他文献

MICHAEL R BAILEY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL R BAILEY', 18)}}的其他基金

Noninvasive, non-ionizing localization and clearance of kidney stones
无创、非电离定位和清除肾结石
  • 批准号:
    8284330
  • 财政年份:
    2011
  • 资助金额:
    $ 3.4万
  • 项目类别:
Noninvasive, non-ionizing localization and clearance of kidney stones
无创、非电离定位和清除肾结石
  • 批准号:
    8585634
  • 财政年份:
    2011
  • 资助金额:
    $ 3.4万
  • 项目类别:
Noninvasive, non-ionizing localization and clearance of kidney stones
无创、非电离定位和清除肾结石
  • 批准号:
    8153391
  • 财政年份:
    2011
  • 资助金额:
    $ 3.4万
  • 项目类别:
Noninvasive, non-ionizing localization and clearance of kidney stones
无创、非电离定位和清除肾结石
  • 批准号:
    8460915
  • 财政年份:
    2011
  • 资助金额:
    $ 3.4万
  • 项目类别:
Physical Mechanisms of Hemostasis by Intense Ultrasound
强超声止血的物理机制
  • 批准号:
    6845401
  • 财政年份:
    2002
  • 资助金额:
    $ 3.4万
  • 项目类别:
Administration Core
行政核心
  • 批准号:
    10452578
  • 财政年份:
    1997
  • 资助金额:
    $ 3.4万
  • 项目类别:
Interactive Effects of Combined Imaging, BWL, and Ultrasonic Propulsion
组合成像、BWL 和超声波推进的交互效果
  • 批准号:
    10192511
  • 财政年份:
    1997
  • 资助金额:
    $ 3.4万
  • 项目类别:
In-Office, Ultrasound-Based Breakage and Removal of Urinary stones
办公室内超声破碎和去除尿路结石
  • 批准号:
    10452577
  • 财政年份:
    1997
  • 资助金额:
    $ 3.4万
  • 项目类别:
Interactive Effects of Combined Imaging, BWL, and Ultrasonic Propulsion
组合成像、BWL 和超声波推进的交互效果
  • 批准号:
    10452581
  • 财政年份:
    1997
  • 资助金额:
    $ 3.4万
  • 项目类别:
Engineering Core C
工程核心C
  • 批准号:
    10681342
  • 财政年份:
    1997
  • 资助金额:
    $ 3.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了