Statistical methods for interpretation of genetic variants by gene regulatory networks
通过基因调控网络解释遗传变异的统计方法
基本信息
- 批准号:10710939
- 负责人:
- 金额:$ 35.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-08 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAllelesCellsComprehensionComputational BiologyDataData SetDiseaseElementsGene ExpressionGene Expression RegulationGenesGeneticGenomeGenotypeGenotype-Tissue Expression ProjectGoalsHealthHumanIndividualJointsLinkage DisequilibriumMapsMethodsModelingNetwork-basedPersonsPhenotypeQuantitative Trait LociRegulator GenesRegulatory ElementResearchSamplingSourceStatistical MethodsUntranslated RNAVariantcausal variantdisease mechanisms studyepigenomeepigenomicsgene regulatory networkgenetic varianthuman reference genomepopulation basedprecision drugsprecision medicineresponsetranscription factor
项目摘要
Project Summary
A person’s genome typically contains millions of variants which represent the differences between this personal
genome and the reference human genome. Interpretation of how these variants cause diseases and
understanding the mechanism(s) of their statistical associations to phenotype are crucial problems in
computational biology and genetics. The problems are not straightforward to address because over 90% of
disease-associated variants are in non-coding regions that have highly specific cellular context regulatory
functions and about which we have limited comprehension. The long-term goal of this project is to explain
mechanistically how non-coding genetic variants affect cellular context-dependent gene regulatory
networks and influence phenotypes. Expression quantitative trait locus (eQTL) mapping and Gene
regulatory networks (GRNs) are two common approaches for interpreting regulatory mechanisms of genetic
variants. eQTL mapping connects variants in non-coding regions to genes by a population-based association
study. GRNs provide information on the cis-regulatory elements that control context-specific expression of target
genes, and information about the transcription factors that act on these elements. GRN-based variant
interpretation is complementary to eQTL mapping and has the potential to overcome the limitations of eQTL
mapping, which are: (1) eQTL mapping is biased for common alleles; (2) eQTL mapping cannot distinguish
variants in strong linkage disequilibrium; and (3) the power to detect trans-eQTL is low. Most previous regulatory
analysis research based on ENCODE data did not include personal genotyping data, and most eQTL mapping
research did not include regulatory information. Joint modelling of eQTLs and GRNs would enable high-accuracy
and mechanistic variant interpretation. However, the required dataset for such analysis - matched gene
expression, epigenome, and genotyping data from the same individuals - are not available for a large human
sample. Available datasets are cross-individual paired genotyping and gene expression data, such as GTEx
data, and cross-cellular-contexts paired gene expression and epigenomics data, such as ENCODE data. These
two types of paired data are also available at the single cell level. To achieve our long-term goal, we will develop
statistical methods to integrate these unmatched datasets (either bulk or single cell) from different sources to (1)
infer high accuracy context-specific GRNs to connect variants, transcription factors, cis-regulatory elements, and
target genes; and (2) detect trans-eQTLs that regulate target genes. These methods can be extended to interpret
disease-associated variants, identify causal variants, and infer personalized drug response to provide guidance
for precision medicine. This project is fundamental for precision medicine, and it will increase our understanding
of how genetic variants contribute to phenotype.
项目摘要
一个人的基因组通常包含数百万个变异,这些变异代表了这个个体之间的差异
基因组和参考人类基因组。解释这些变异是如何导致疾病和
理解它们与表型的统计关联的机制(S)是
计算生物学和遗传学。这些问题并不容易解决,因为90%以上的人
与疾病相关的变体位于具有高度特异性细胞背景调控的非编码区
功能,我们对它的理解有限。这个项目的长期目标是解释
非编码基因变异如何影响细胞上下文相关的基因调控
网络和影响表型。表达数量性状基因座(EQTL)定位与基因
调控网络(GRN)是解释基因调控机制的两种常用方法
变种。EQTL定位通过基于群体的关联将非编码区的变异与基因联系起来
学习。GRN提供了关于控制靶基因上下文特定表达的顺式调控元件的信息
基因,以及作用于这些元素的转录因子的信息。基于GRN的变体
解释是eQTL定位的补充,有可能克服eQTL的局限性
作图:(1)eQTL作图对常见等位基因有偏见;(2)eQTL作图不能区分
强连锁不平衡变异;(3)检测反式eQTL的能力较低。大多数以前的监管规定
基于ENCODE数据的分析研究不包括个人基因分型数据,以及大多数eQTL定位
研究不包括监管信息。EQTL和GRN的联合建模将实现高精度
机械化的变式解释。然而,这种分析所需的数据集与基因匹配
来自相同个体的表达、表观基因组和基因分型数据--对于大个子人类是不可用的
样本。可用的数据集是跨个体配对的基因分型和基因表达数据,例如GTEx
数据,以及跨细胞背景配对的基因表达和表观基因组学数据,如ENCODE数据。这些
在单个单元格级别上还提供两种类型的配对数据。为了实现长远目标,我们将发展
将来自不同来源的这些不匹配的数据集(批量或单个单元格)整合到(1)的统计方法
推断高精度的上下文特定GRN以连接变体、转录因子、顺式调控元件和
目的基因;以及(2)检测调节目的基因的反式eQTL。这些方法可以扩展到解释
疾病相关变异,识别因果变异,并推断个性化的药物反应,以提供指导
为了精准的医学。这个项目是精准医学的基础,它将增加我们对
基因变异是如何影响表型的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhana Duren其他文献
Zhana Duren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 35.59万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 35.59万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 35.59万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 35.59万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 35.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 35.59万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 35.59万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 35.59万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 35.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 35.59万 - 项目类别:
Studentship