Computational Methods for Emerging Spatially-resolved Transcriptomics with Multiple Samples
新兴的多样本空间分辨转录组学的计算方法
基本信息
- 批准号:10711312
- 负责人:
- 金额:$ 40.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAllelesAtlasesBiologicalCellsComputer softwareComputing MethodologiesDataData AnalysesData SetDiagnosisDisciplineDiseaseEnvironmental HealthExperimental DesignsFaceGene ExpressionGoalsHealthHumanImageIndividualKnowledgeMalignant NeoplasmsMethodsMolecularNeurodegenerative DisordersPreventionPrognosisRNA SplicingResearchResearch PersonnelSamplingSpecificityTechnologyTissuesVariantWorkcell typecomplex datacomputerized toolsexperienceexperimental groupgenomic dataimprovedmHealthmultidimensional dataopen sourceprecision medicineprogramstooltranscriptome sequencingtranscriptomicstreatment response
项目摘要
Project Summary/Abstract
Understanding the spatial landscape of gene expression in tissues is a fundamental question for human health
and disease. Applications range from identifying the spatial organization of cell types to dysregulation of
spatial-dependent gene expression associated with disease. Advances in technologies, such as
spatially-resolved transcriptomics (SRT), provide a wealth of data to investigate these questions. Furthermore,
SRT combined with advances in long-read RNA-sequencing enable applications such as identifying
spatial-dependent splicing variation and allele specificity in healthy and disease states, such as cancer or
neurodegenerative disorders. Recent SRT studies are generating datasets across multiple samples (different
donors or adjacent tissue sections), but researchers analyze samples independently because there lack
computational tools for datasets with multiple samples. In contrast, when samples are jointly analyzed together,
the statistical power is increased to detect differences with greater accuracy and precision. The lack of tools to
analyze SRT data with multiple samples is a significant knowledge gap that limits are ability to refine the
molecular causes and consequences of diseases that can be targeted for prevention and treatment.
My research program develops scalable computational methods and open-source software for biomedical data
analysis, in particular single-cell and spatial transcriptomics data, leading to an improved understanding of
human health and disease. Here, our goal is to focus on developing scalable computational methods and
software for data from spatial and long-read technologies with multiple samples and experimental conditions to
accurately (1) predict spatial domains of tissues across multiple samples, (2) identify differences in spatial gene
expression across experimental conditions or biological groups with multiple samples in each group, and (3)
identify differential splicing variation across spatial domains or experimental conditions.
The rationale for the proposed work is that the computational tools developed will enable substantial advances
in our understanding of the spatial landscape of gene expression on distinct scales from cells to tissues to
individuals. The significance of this proposal is substantial with broad impact for researchers increasingly using
these imaging and genomic data, such as large-scale consortia generating spatial atlases across multiple
samples, but also the proposed methods will be relevant to a wide variety of scientific disciplines that leverage
high-dimensional data in a spatial context, such as environmental and mobile health. The project builds on my
past experience in developing computational methods and open-source software for scalable clustering and
identifying differences in gene expression at the single-cell level. The creation of well-documented, open-source
software expands the impact of this work to other researchers aiming to understand the spatial landscape of
gene expression in a variety of disease settings.
项目摘要/摘要
了解组织中基因表达的空间格局是关系到人类健康的一个基本问题。
和疾病。应用范围从识别细胞类型的空间组织到细胞类型的失调
与疾病相关的空间相关基因表达。技术进步,例如
空间分辨转录组学(SRT)为研究这些问题提供了丰富的数据。此外,
SRT与长读RNA测序的进步相结合,使诸如识别
健康和疾病状态下的空间相关剪接变异和等位基因fi城市,如癌症或
神经退行性疾病。最近的SRT研究正在跨多个样本(不同)生成数据集
供体或邻近组织切片),但研究人员独立分析样本,因为没有
包含多个样本的数据集的计算工具。相比之下,当样本被联合分析在一起时,
增加了统计能力,以更高的准确性和精确度检测差异。缺乏工具来
用多个样本分析SRT数据是一个显著的知识空白,因为它限制了fifi的能力
可用于预防和治疗的疾病的分子原因和后果。
我的研究项目为生物医学数据开发了可扩展的计算方法和开源软件
分析,特别是单细胞和空间转录数据,有助于更好地理解
人类的健康和疾病。在这里,我们的目标是专注于开发可伸缩的计算方法和
空间和长读技术的数据软件,具有多个样本和实验条件
准确地(1)跨多个样本预测组织的空间域,(2)识别空间基因的差异
跨实验条件或生物组的表达,每组有多个样本,以及(3)
确定跨空间域或实验条件的差异剪接变异。
拟议工作的理由是,所开发的计算工具将使实质性的进展成为可能
在我们对从细胞到组织的不同尺度上基因表达的空间格局的理解中
个人。这一建议的意义是巨大的,对越来越多的研究人员使用fi
这些成像和基因组数据,如大型联合体生成的跨多个
样例,而且所建议的方法也将与利用
空间环境中的高维数据,例如环境和移动健康。这个项目是建立在我的
过去开发计算方法和开源软件以实现可伸缩的集群和
在单细胞水平上识别基因表达的差异。创建文档齐全、开放源代码的
软件将这项工作的影响扩大到其他旨在了解
基因在各种疾病环境中的表达。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Carinne Hicks其他文献
Stephanie Carinne Hicks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Carinne Hicks', 18)}}的其他基金
Profiling the human dentate gyrus across the lifespan with spatially-resolved transcriptomics
利用空间分辨转录组学分析人类齿状回的整个生命周期
- 批准号:
10724575 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
Integrative cellular deconvolution of human brain RNA sequencing data
人脑 RNA 测序数据的综合细胞反卷积
- 批准号:
10573242 - 财政年份:2020
- 资助金额:
$ 40.45万 - 项目类别:
Integrative cellular deconvolution of human brain RNA sequencing data
人脑 RNA 测序数据的综合细胞反卷积
- 批准号:
10007230 - 财政年份:2020
- 资助金额:
$ 40.45万 - 项目类别:
Integrative cellular deconvolution of human brain RNA sequencing data
人脑 RNA 测序数据的综合细胞反卷积
- 批准号:
10359095 - 财政年份:2020
- 资助金额:
$ 40.45万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 40.45万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 40.45万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 40.45万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 40.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 40.45万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 40.45万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 40.45万 - 项目类别: