Bioorthogonal temporospatial tools
生物正交时空工具
基本信息
- 批准号:10711005
- 负责人:
- 金额:$ 41.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationArchitectureBiologicalBiotechnologyCellsChemicalsChemistryDetectionDevelopmentEpigenetic ProcessEventGene ExpressionGenerationsGoalsGrainHybridsIndividualInvestigationKineticsLigationMemoryMethodsMolecularNucleic Acid HybridizationNucleic AcidsOrganismPerformancePopulationPropertyReactionRecording of previous eventsResearchSignal TransductionSpecificitySpeedSynapsesSystemTimeTissuesTranslatingTranslationsVisualizationbiomaterial compatibilitydetection sensitivityin vivomolecular dynamicsmultiplexed imagingresponsescaffoldsuccesstool
项目摘要
PROJECT SUMMARY
Living systems choreograph molecular events with precise control—place, time, kinetics, and intensity
—and record memories of those occurrences in synaptic networks, gene expression, epigenetic
marks, and myriad other circuits that govern the where&when of biologic responses. Visualizing this
choreography and tracing these histories are tasks that chemists and biologists can accomplish with
only partial accuracy, considerable effort, and limited temporal range. Our research agendas are thus
focused on constructing new chemical tools for temporospatial analysis of living systems, and
organized around the emergent properties that result from deploying next-level bioorthogonal
chemistries within multi-layered (bio)molecular architectures. The resulting hybrid systems circumvent
perennial challenges, achieving: i) simultaneous speed/stability, for efficient real-time molecular
machinery and longitudinal performance in vivo; ii) sensitivity for detection of rare/unique events; and
iii) specificity/multiplicity, for accurate detection and fine-grained molecular encoding of (sub)cellular
histories across time.
Building on the momentum of ongoing mechanistic investigations and the success of our recent effort
to achieve multiplexed imaging of living cells and tissues, our goals for the next five years extend
bioorthogonal chemistry in applications that exploit two/three dimensional topologies, rather than
singular ligation/cleavage events, and in architectures that leverage nucleic acid hybridization to
encode sequence recognition, accelerate reaction kinetics, and enable signal amplification. In one set
of projects, we aim to create self-amplifying programmable bioorthogonal reactions, elaborate the
capabilities of this new toolkit, and apply them to transform our methods for visualizing living cells and
tissues. In another, we have envisioned sequence-generating architectures that convert biocompatible
chemical reactivity into amplifiable biological information, establishing the concepts of bioorthogonal
translation and sequegenicity. With scaffolds that readily integrate into the workflows of existing high-
performance nucleic acid biotechnologies, we anticipate broad applicability and rapid downstream
development of a new generation of tools for tracking (bio)molecules, individual cells, and populations.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Carlson其他文献
Jonathan Carlson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 41.75万 - 项目类别:
Standard Grant