Voltage Imaging of Astrocyte-Neuron Interactions
星形胶质细胞-神经元相互作用的电压成像
基本信息
- 批准号:10711423
- 负责人:
- 金额:$ 41.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAction PotentialsAffectAge MonthsAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease therapyAmino Acid TransporterAnatomyAstrocytesAstrocytosisBindingBlood - brain barrier anatomyBrainCessation of lifeClinicalDataDevelopmentDiseaseDisease ProgressionExcitatory Amino Acid AntagonistsExcitatory Amino AcidsExtracellular SpaceFunctional disorderGLAST ProteinGlutamatesHeterozygoteHippocampusHomeostasisHumanImageMediatingMemantineMetabolicModelingMusNeuronsOpticsParentsPathologicPathologyPeripheralPhenotypePlayPopulationPositioning AttributePotassiumPotassium ChannelProcessProteinsRoleSeizuresShapesSpecificitySynapsesTestingTimeageddisease phenotypeearly onsetexcitotoxicityexperienceextracellularglutamatergic signalingmouse modelneuroinflammationneurotransmissionnormal agingoverexpressionpreventresponseuptakevoltage
项目摘要
ABSTRACT.
Astrocytes control neurotransmission, contribute to a robust blood-brain-barrier (BBB), and metabolically support
neuronal activity. In Alzheimer’s Disease (AD), astrocytes become reactive near A plaques, contribute to
neuroinflammation, and contribute to synaptic and circuit abnormalities. The role that astrocytes play in
controlling synaptic excitation by removing glutamate from the extracellular space is particularly intriguing in AD.
Astrocytes express high levels of excitatory amino acid transporters (EAATs), including GLT1 and GLAST, in
their peripheral processes that bind and remove extracellular glutamate to limit synaptic excitation. EAATs, as
well as other astrocyte proteins, are known to be decreased late in AD progression. Aberrant glutamate signaling
is thought to contribute to AD progression, as evidenced by the clinical use of memantine, a glutamate receptor
antagonist, as an AD therapy, strongly implicating EAATs in the progression of AD. Finally, soluble A inhibits
EAAT function during heightened neuronal activity. Interestingly, we recently showed that neuronal activity
causes astrocyte depolarization, which drives voltage-dependent inhibition of EAAT function to enhance
neuronal activation. In the parent R01, we use astrocyte-expressed genetically encoded voltage indicators
(GEVIs) to optically quantify Vm and showed that neuronal activity depolarizes peripheral astrocyte processes
(PAPs) with synapse-specificity. In this supplement request, we provide preliminary data that during normal aging
astrocytes sporadically lose the expression of GLT1, GLAST, and Kir4.1 and take on a phenotype known as
atypical astrocytes (AtAs). Importantly, AtAs are not a form of reactive astrocytosis. Preliminary data suggests
AtAs are more abundant and occur earlier in the APPNL-G-F mouse model of AD and are seen in the aged human
brain. Here we will test they hypothesis that because AtAs, which lack Kir4.1 and GLT-1, are abundant in the
hippocampus of APPNL-G-F mice, astrocytes experience increased activity-induced depolarization, leading to
exaggerated inhibition of glutamate uptake. This creates a situation in which increased neuronal activity could
drive synergistic voltage-dependent and A-mediated EAAT inhibition in AD. We chose to use the APPNL-G-F
model due to its early onset, overlapping with the normal development of AtAs, without APP overexpression.
Using the APPNL-G-F mice, we will determine: (SA1) “Do hippocampal astrocytes in APPNL-G-F mice show increased
Vm responses to neuronal activity?” and (SA2) “Is activity-dependent inhibition of glutamate uptake enhanced in
the hippocampus of APPNL-G-F mice?“. Both increased activity-induced PAP depolarization and elevated A could
alter activity-induced EAAT inhibition in APPNL-G-F mice. If so, this would position astrocyte-neuron interactions,
K+ and glutamate homeostasis as key players in early AD progression and would motivate enhancing glutamate
and K+ uptake to reduce AD-related pathology. When complete, we will know whether newly discovered changes
in PAP Vm are exaggerated and contribute to aberrant glutamate excitation in APPNL-G-F mice. We will be poised
to leverage these findings to enhance K+ and glutamate homeostasis to prevent pathological excitation in AD.
抽象的。
星形胶质细胞控制神经传递,有助于强大的血脑屏障(BBB),并为新陈代谢提供支持
神经元活动。在阿尔茨海默病(AD)中,星形胶质细胞在斑块附近变得活跃,有助于
神经炎症,并导致突触和回路异常。星形胶质细胞在其中发挥的作用
在AD中,通过从细胞外空间移除谷氨酸来控制突触兴奋尤其耐人寻味。
星形胶质细胞高水平表达兴奋性氨基酸转运体,包括GLT1和GLAST
它们的外周突起结合和移除细胞外的谷氨酸,以限制突触的兴奋。东亚航空运输协会,AS
和其他星形细胞蛋白一样,已知在AD进展的后期会减少。谷氨酸信号异常
被认为是促进AD进展的因素,临床使用谷氨酸受体美金刚证明了这一点
拮抗剂作为AD的一种治疗方法,强烈地提示EAATs参与了AD的进展。最后,可溶性A抑制
EAAT在神经元活动增强过程中的作用。有趣的是,我们最近发现神经元活动
引起星形胶质细胞去极化,从而促使对EAAT功能的电压依赖性抑制增强
神经元激活。在亲本R01中,我们使用星形胶质细胞表达的遗传编码电压指示器
(GEVI)对VM进行光学量化,并显示神经元活动使外周星形胶质细胞突起去极化
(PAPs),具有突触特异性。在本补充请求中,我们提供了在正常老化期间的初步数据
星形胶质细胞零星丢失GLT1、GLAST和Kir4.1的表达,并呈现一种称为
非典型星形胶质细胞(ATA)。重要的是,ATAS不是反应性星形细胞增多症的一种形式。初步数据显示
在阿尔茨海默病APPNL-G-F小鼠模型中,ATA含量更丰富,发生得更早,在老年人中也可见
大脑。在这里,我们将检验他们的假设,因为缺少Kir4.1和GLT-1的atas在
在APPNL-G-F小鼠的海马区,星形胶质细胞经历了活动诱导的去极化增加,导致
对谷氨酸摄取的夸大抑制。这创造了一种情况,在这种情况下,神经元活动增加可能
驱动协同电压依赖和A-介导的阿尔茨海默病的抑制作用。我们选择使用APPNL-G-F
模型因起病早,与正常的ATAS发展重叠,无APP过度表达。
利用APPNL-G-F小鼠,我们将确定:(SA1)APPNL-G-F小鼠的海马星形胶质细胞是否表现出增加
VM对神经元活动的反应?“和(SA2)“是否增强了谷氨酸摄取的活性依赖性抑制作用
APPNL-G-F小鼠的海马区?“。活动诱发的PAP去极化增加和A升高均可
改变活性诱导的APPNL-G-F小鼠EAAT抑制。如果是这样的话,这将定位星形胶质细胞与神经元的相互作用,
K+和谷氨酸稳态在早期AD进展中的关键作用,并将促进谷氨酸的增加
K+摄取减少AD相关病理改变。完成后,我们将知道新发现的更改是否
在PAP中,Vm被夸大,并导致APPNL-G-F小鼠异常的谷氨酸兴奋。我们会做好准备
利用这些发现来增强K+和谷氨酸的动态平衡,以防止AD的病理性兴奋。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chris G Dulla其他文献
Who let the spikes out?
谁把尖刺放出来了?
- DOI:
10.1038/nn0809-959 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:20.000
- 作者:
Chris G Dulla;John R Huguenard - 通讯作者:
John R Huguenard
Chris G Dulla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chris G Dulla', 18)}}的其他基金
Using Single Cell Biological Approaches to Understand CNS TB
使用单细胞生物学方法了解中枢神经系统结核
- 批准号:
10739081 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Utilizing Single Cell Biological Approaches to Understand CNS TB
利用单细胞生物学方法了解中枢神经系统结核
- 批准号:
10023220 - 财政年份:2019
- 资助金额:
$ 41.25万 - 项目类别:
Voltage imaging of astrocyte-neuron interactions
星形胶质细胞-神经元相互作用的电压成像
- 批准号:
9913654 - 财政年份:2019
- 资助金额:
$ 41.25万 - 项目类别:
Voltage imaging of astrocyte-neuron interactions
星形胶质细胞-神经元相互作用的电压成像
- 批准号:
10433036 - 财政年份:2019
- 资助金额:
$ 41.25万 - 项目类别:
Voltage imaging of astrocyte-neuron interactions
星形胶质细胞-神经元相互作用的电压成像
- 批准号:
10433847 - 财政年份:2019
- 资助金额:
$ 41.25万 - 项目类别:
Voltage imaging of astrocyte-neuron interactions
星形胶质细胞-神经元相互作用的电压成像
- 批准号:
10192852 - 财政年份:2019
- 资助金额:
$ 41.25万 - 项目类别:
Utilizing Single Cell Biological Approaches to Understand CNS TB
利用单细胞生物学方法了解中枢神经系统结核
- 批准号:
9817044 - 财政年份:2019
- 资助金额:
$ 41.25万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 41.25万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 41.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 41.25万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 41.25万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 41.25万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 41.25万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 41.25万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 41.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




