Mechanisms that govern dopaminergic amacrine cell diversity
控制多巴胺能无长突细胞多样性的机制
基本信息
- 批准号:10709883
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2025-09-29
- 项目状态:未结题
- 来源:
- 关键词:AdultAllelesAmacrine CellsAttenuatedBasic ScienceCell physiologyCellsCircadian RhythmsCuesDataDefectDevelopmentDiabetic RetinopathyDiseaseDopamineEmbryoEnzymesEyeGenerationsGenetic TranscriptionGoalsHigh Pressure Liquid ChromatographyIndividualInterneuronsKnowledgeLeadMeasuresMicroscopyMolecularMolecular TargetMusMyopiaNeuromodulatorNeuronsParkinson DiseasePathogenesisPathway interactionsPhosphotransferasesPopulationProductionProtein-Serine-Threonine KinasesRegenerative MedicineRetinaRetinal DiseasesRetinitis PigmentosaSTK11 geneSignal PathwaySignal TransductionSourceSpecific qualifier valueTamoxifenTestingTherapeuticTimeTyrosine 3-MonooxygenaseVisionVision DisordersVisualVisualizationanalogdopaminergic neuronexperimental studygain of functioninducible Creloss of functionmutantnanoscaleneuron lossnormal agingnovelnovel therapeuticspharmacologicpreventprogenitorprogramsrepairedretinal neuronsingle cell sequencingsingle-cell RNA sequencingultra high resolution
项目摘要
Project Summary: Dopamine signaling in the retina is crucial for regulating circadian rhythms and circuit
reconfiguration for daytime vision. Reduced dopamine signaling is associated with many visual disorders and
pharmacological therapies using dopamine analogues have shown promise for treating diseases like diabetic
retinopathy. The primary source of retinal dopamine is the dopaminergic amacrine cells (DACs). This project is
focused on elucidating molecular mechanisms that govern the specification of these specialized amacrines.
This knowledge will enable the development of novel therapeutics that harness the power of regenerative
medicine to regrow repair or replace the dopaminergic amacrine cells and restore dopamine abundance to
normal levels. Toward this goal, we conducted a screen to identify molecules that, when deleted, increase
dopaminergic amacrine cell formation. We uncovered a candidate signaling pathway controlled by the serine-
threonine kinase LKB1. When LKB1 is deleted embryonically there is an approximate doubling of the
dopaminergic amacrines that persists into adulthood. Concomitantly there is an increase in dopamine when
measured by High Performance Liquid Chromatography. We hypothesize that LKB1 signaling is activating
developmental programs that restrict the abundance of the DAC population. Here we set out to
determine whether LKB1 signaling is required intrinsically in amacrine cell precursors as well as the temporal
requirement for LKB1 signaling to restrict DAC formation. We will also leverage the ability of super resolution
STORM microscopy to visualize the distribution and release of dopamine in the newly generated DACs. Our
second aim is to identify the downstream effectors from LKB1 that are required to restrict DAC formation. We
will utilize loss of function and rescue experiments of known molecules downstream from LKB1 such as AMPK
to test their contribution to DAC formation. We will also conduct single cell RNA sequencing to compare the
transcriptional landscapes between DACs in control vs mutant retinas. This will allow us to find additional
downstream candidates from LKB1 required for restriction of the abundance of DACs. This analysis is
compelling from the basic science perspective but will also define novel molecular targets for mitigating
dopamine neuron loss and restoring visual capacity. This knowledge may be useful for preventing
dopaminergic neuron defects beyond the eye, such as those that occur in Parkinson’s disease.
项目概述:视网膜中的多巴胺信号对于调节昼夜节律和电路至关重要
重新配置白天的视野。多巴胺信号传导减少与许多视觉障碍有关,
使用多巴胺类似物的药理学疗法已经显示出治疗糖尿病等疾病的前景,
视网膜病变视网膜多巴胺的主要来源是多巴胺能无长突细胞(DAC)。这个项目是
专注于阐明控制这些特化无长突的分子机制。
这些知识将使开发新的疗法,利用再生的力量,
药物再生修复或取代多巴胺能无长突细胞和恢复多巴胺丰度,
正常水平。为了实现这一目标,我们进行了一次筛选,以确定当删除时,
多巴胺能无长突细胞形成。我们发现了一条由丝氨酸控制的信号通路-
苏氨酸激酶LKB 1。当LKB 1在胚胎中缺失时,
持续到成年期的多巴胺能无长突。伴随着多巴胺的增加,
通过高效液相色谱法测定。我们假设LKB 1信号被激活,
限制DAC人口丰富的发展计划。在这里,我们开始
确定LKB 1信号传导是否是无长突细胞前体细胞以及颞叶细胞固有的需要,
要求LKB 1信令限制DAC形成。我们还将利用超分辨率
STORM显微镜观察新生成的DAC中多巴胺的分布和释放。我们
第二个目的是确定LKB 1的下游效应物,这些效应物是限制DAC形成所必需的。我们
将利用LKB 1下游已知分子如AMPK的功能丧失和拯救实验
以测试它们对DAC形成的贡献。我们还将进行单细胞RNA测序,
对照与突变视网膜中DAC之间的转录景观。这将使我们能够找到更多的
限制DAC丰度所需的LKB 1下游候选物。这种分析是
从基础科学的角度来看是令人信服的,但也将定义新的分子靶点,
多巴胺神经元丧失和恢复视觉能力。这些知识可能有助于预防
眼睛以外的多巴胺能神经元缺陷,如帕金森病中发生的那些。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Mackin其他文献
Robert Mackin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Mackin', 18)}}的其他基金
Mechanisms that govern dopaminergic amacrine cell diversity
控制多巴胺能无长突细胞多样性的机制
- 批准号:
10535384 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 6.95万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别: