Discovering and Manipulating Macromolecular Conformational Ensembles
发现和操纵大分子构象整体
基本信息
- 批准号:10710024
- 负责人:
- 金额:$ 59.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-26 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:Antibiotic ResistanceBiologicalCatalysisChemicalsComputer softwareComputing MethodologiesCryoelectron MicroscopyCrystallographyDataData CollectionDedicationsDepositionDevelopmentDisclosureDrug DesignEngineeringEnzymesEquilibriumGlutamate-Ammonia LigaseGoalsGrantHeterogeneityHydrogenImageLigand BindingLigandsMapsMethodsModelingModificationMolecular ConformationMutationNational Institute of General Medical SciencesPTPN1 genePhosphoric Monoester HydrolasesPopulationPrintingProtein ConformationProtein EngineeringProteinsRadiation induced damageResearchResearch PersonnelRoentgen RaysSignal TransductionStructureTechnologyTemperatureTestingValidationWorkdata reusedensitydesignimprovedinnovationinterestmacromoleculescreeningstructural biologyweb site
项目摘要
PROJECT SUMMARY
Macromolecules fluctuate between different structural states of a conformational ensemble. One of the major
effects of ligands and mutations is to change the relative stability of these different states. However, most of
our structural biology modeling revolves around a paradigm of distinct and singular structures. Our major goal
is to move beyond static images of biological macromolecules, while retaining the ability to interrogate the
resulting models to improve ligand design and mutational engineering. We are also interested in creating
experimental methods to perturb the relative populations of these conformations, using temperature or
chemical perturbation to bring them into the window where they can be observed and modeled. In two previous
grants supported by NIGMS, we have focused three primary technologies: 1) ensemble modeling, where
alternative conformations present in X-ray (and now, increasingly, cryoEM) density maps are explicitly
identified and refined as a conformational ensemble or multiconformer model; 2) multitemperature
crystallography, where the temperature of X-ray data collection is shifted, while avoiding radiation damage, to
change the relative balance of different populations; 3) model validation, where the density at specific points is
quantified to support or falsify modelling. We have applied these paradigms broadly and collaboratively, with a
commitment to open methods and software. Two major foci have been: 1) ligand discovery using combinations
of multitemperature crystallography and empirical X-ray fragment screening (most notably to identify new ways
to allosterically inhibit the phosphatase PTP1B); 2) protein mutational engineering (most notably in the context
of protein design and in understanding the relationship between conformation dynamics and catalysis). With
MIRA support, we will continue our computational developments to further improve cryoEM modeling of
alternative conformations, to perform large scale test of the effects of ligand binding on protein conformational
heterogeneity, to improve validation and comparison of distinct ensemble model types, and to quantify density
signals for alternative conformations, hydrogens, and modifications. In parallel, our experimental work will
focus on the structural basis of new ligands to counter antibiotic resistance and on defining the conformational
landscape of the oligomeric enzyme glutamine synthetase. Our experimental work provides an important
testbed for new computational innovations and ways to validate the importance of newly modeled alternative
conformations. MIRA support will also enable us to conduct our research in a transparent and open manner,
dedicating ourselves further into early data disclosure (e.g. preprints and posts on our website) and data reuse
(e.g. deposition of primary diffraction and EM data), which are already paying dividends by enabling other
researchers. In summary, our research will create robust experimental and computational methods to access
conformational ensembles and provide avenues to exploit conformational heterogeneity for useful ends.
项目摘要
大分子在构象系综的不同结构状态之间波动。的一个主要
配体和突变的作用是改变这些不同状态的相对稳定性。但大部分
我们的结构生物学模型围绕着独特和单一结构的范例。我们的主要目标
是超越生物大分子的静态图像,同时保留询问
由此产生的模型,以改善配体设计和突变工程。我们也有兴趣创造
实验方法来扰乱这些构象的相对群体,使用温度或
化学扰动,使他们进入窗口,在那里他们可以观察和建模。在前两次
在NIGMS的资助下,我们专注于三项主要技术:1)集成建模,其中
在X射线(现在,越来越多,cryoEM)密度图中存在的替代构象是明确的,
作为构象系综或多构象模型识别和细化; 2)多温度
晶体学,其中X射线数据收集的温度被转移,同时避免辐射损伤,
改变不同种群的相对平衡; 3)模型验证,其中特定点的密度是
量化以支持或伪造模型。我们广泛地、协作地应用了这些范例,
致力于开放的方法和软件。两个主要焦点是:1)使用组合的配体发现
多温晶体学和经验X射线碎片筛选(最值得注意的是,
变构抑制磷酸酶PTP 1B); 2)蛋白质突变工程(最值得注意的是,
蛋白质设计和理解构象动力学和催化之间的关系)。与
MIRA的支持,我们将继续我们的计算发展,以进一步改善cryoEM建模
替代构象,以进行配体结合对蛋白质构象的影响的大规模测试
异质性,以改善不同集合模型类型的验证和比较,并量化密度
替代构象、氢和修饰的信号。与此同时,我们的实验工作将
专注于新配体的结构基础,以对抗抗生素耐药性,并定义构象
寡聚酶谷氨酰胺合成酶的景观。我们的实验工作提供了重要的
新的计算创新和验证新模型替代方案重要性的方法的试验平台
构象MIRA的支持也将使我们能够以透明和开放的方式进行研究,
进一步致力于早期数据披露(例如预印本和我们网站上的帖子)和数据重用
(e.g.主要衍射和EM数据的沉积),这已经通过使其他
研究人员总之,我们的研究将创建强大的实验和计算方法来访问
构象集合并提供利用构象异质性用于有用目的的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Solomon Fraser其他文献
James Solomon Fraser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Solomon Fraser', 18)}}的其他基金
Inhibiting Viral Macrodomains Using Structure-Based Design
使用基于结构的设计抑制病毒宏域
- 批准号:
10512631 - 财政年份:2022
- 资助金额:
$ 59.76万 - 项目类别:
Equipment for Discovering and Manipulating Macromolecular Conformational Ensembles
发现和操纵大分子构象整体的设备
- 批准号:
10797971 - 财政年份:2022
- 资助金额:
$ 59.76万 - 项目类别:
Discovering and Manipulating Macromolecular Conformational Ensembles
发现和操纵大分子构象整体
- 批准号:
10406110 - 财政年份:2022
- 资助金额:
$ 59.76万 - 项目类别:
The Impact of Mutation on the Conformations and Recognition of Ubiquitin
突变对泛素构象和识别的影响
- 批准号:
8538838 - 财政年份:2011
- 资助金额:
$ 59.76万 - 项目类别:
The Impact of Mutation on the Conformations and Recognition of Ubiquitin
突变对泛素构象和识别的影响
- 批准号:
8335438 - 财政年份:2011
- 资助金额:
$ 59.76万 - 项目类别:
The Impact of Mutation on the Conformations and Recognition of Ubiquitin
突变对泛素构象和识别的影响
- 批准号:
8728042 - 财政年份:2011
- 资助金额:
$ 59.76万 - 项目类别:
The Impact of Mutation on the Conformations and Recognition of Ubiquitin
突变对泛素构象和识别的影响
- 批准号:
8213132 - 财政年份:2011
- 资助金额:
$ 59.76万 - 项目类别:
相似海外基金
domino4chem: Semi-biological Domino Catalysis for Solar Chemical Synthesis
domino4chem:用于太阳能化学合成的半生物多米诺催化
- 批准号:
EP/X030563/1 - 财政年份:2023
- 资助金额:
$ 59.76万 - 项目类别:
Research Grant
Pushing Heterogeneous Catalysis into Biological Chemistry via Cofactor Regeneration
通过辅因子再生将多相催化推向生物化学
- 批准号:
EP/V048635/1 - 财政年份:2021
- 资助金额:
$ 59.76万 - 项目类别:
Research Grant
Harnessing Biological Catalysis as Low Energy Solutions to Pesticides & other Micropollutants
利用生物催化作为农药的低能耗解决方案
- 批准号:
2868063 - 财政年份:2021
- 资助金额:
$ 59.76万 - 项目类别:
Studentship
RUI: Development of Unnatural Tryptophan Derivatives to Expand Tryptophan Function and to Study Biological Catalysis
RUI:开发非天然色氨酸衍生物以扩展色氨酸功能并研究生物催化
- 批准号:
2003956 - 财政年份:2020
- 资助金额:
$ 59.76万 - 项目类别:
Standard Grant
RoL: EAGER: DESYN-C Spontaneously Synthesized RNA Protocells for Biological Catalysis
RoL:EAGER:DESYN-C 自发合成的 RNA 原始细胞用于生物催化
- 批准号:
1844119 - 财政年份:2019
- 资助金额:
$ 59.76万 - 项目类别:
Standard Grant
REU Site: Research Opportunities in Biological and Chemical Catalysis
REU 网站:生物和化学催化领域的研究机会
- 批准号:
1757078 - 财政年份:2018
- 资助金额:
$ 59.76万 - 项目类别:
Continuing Grant
Why does Nature use modular enzyme architectures for biological catalysis?
为什么 Nature 使用模块化酶结构进行生物催化?
- 批准号:
BB/N013972/1 - 财政年份:2017
- 资助金额:
$ 59.76万 - 项目类别:
Research Grant
Asymmetric synthesis for asymmetric catalysis and biological activity screening
用于不对称催化和生物活性筛选的不对称合成
- 批准号:
2636525 - 财政年份:2017
- 资助金额:
$ 59.76万 - 项目类别:
Studentship
Sulfido dithiolene complexes modeling molybdenum and tungsten dependent oxiodreductases - investigating synthesis, catalysis and biological activity to elucidate structural uncertainties, structure-function relationships and biosynthesis
磺基二硫烯配合物模拟钼和钨依赖性氧化还原酶 - 研究合成、催化和生物活性,以阐明结构不确定性、结构-功能关系和生物合成
- 批准号:
310986441 - 财政年份:2016
- 资助金额:
$ 59.76万 - 项目类别:
Priority Programmes
Why does Nature use modular enzyme architectures for biological catalysis?
为什么 Nature 使用模块化酶结构进行生物催化?
- 批准号:
BB/N013980/1 - 财政年份:2016
- 资助金额:
$ 59.76万 - 项目类别:
Research Grant