Inhibiting Viral Macrodomains Using Structure-Based Design
使用基于结构的设计抑制病毒宏域
基本信息
- 批准号:10512631
- 负责人:
- 金额:$ 298.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-16 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVADP ribosylationAddressAdenosine Diphosphate RiboseAnimal ModelAnimalsBindingBiochemicalBiochemistryBiological AssayBiological MarkersCOVID-19 treatmentCatalogsCatalysisCell LineCell modelCellsChemicalsChemistryChikungunya virusCommunicable DiseasesComputational BiologyComputer AnalysisCrystallographyDefectDevelopmentDockingDropsDrug DesignDrug KineticsDrug TargetingElementsFeedbackFoundationsFutureHeadHumanImmune responseImmunofluorescence ImmunologicImmunologicsIn VitroIndustrializationInfectionInterferonsKnowledgeLeadLettersMeasuresModelingModificationMonitorMusPeptidesPermeabilityPharmaceutical ChemistryPharmaceutical PreparationsPost-Translational Protein ProcessingPropertyProteinsProteomicsReportingRoentgen RaysSARS coronavirusSideSignal PathwaySignal TransductionSpecificityStructureTestingToxicologyTransgenesViralViral Load resultVirusVirus DiseasesWorkX-Ray Crystallographyanalogbasecellular targetingcomputational chemistrydesigneffectiveness testingexperimental studyhuman diseasein vivoinhibitormutantpandemic diseasephosphoproteomicsprogramsresponsescaffoldscreeningside effectstructural biologytargeted biomarkertherapeutic evaluationtooltranscriptome sequencingvirology
项目摘要
PROJECT 5: INHIBITING VIRAL MACRODOMAINS USING STRUCTURE-BASED DESIGN
SUMMARY
Viral macrodomains counter the host immune response by removing ADP-ribosylation modifications from host
proteins, with important consequences for interferon and many other signaling pathways. Previous experiments
in cell and animal models that use wild type and catalytically dead SARS-CoV and chikungunya virus (CHIKV)
macrodomains validate these proteins as potential drug targets. However, no inhibitors exist for viral
macrodomains. Using an integration of high throughput X-ray based fragment screen and docking, we have
identified over 200 binders to the SARS-CoV-2 macrodomain (Mac1). Our subsequent assays guided the
development of the first structurally characterized tool compounds that are more potent than the substrate ADP-
ribose. In addition, we have leveraged the chemical knowledge to uncover additional scaffolds by docking. In
this proposal, we advance compounds through a structure-based design approach, using biochemical assays
against peptide binding and catalytic function. To identify starting points against the CHIKV macrodomain, we
will perform a new X-ray crystallography-based fragment screen and perform an Ultra-large docking campaign
(Screening Core). Our plan is to design compounds with low potency against human macrodomains and to
leverage medicinal chemistry to drive potency against viral macrodomains. Our early activities will identify
multiple alternative scaffolds with high potency in vitro to progress to target engagement in cells. Our cell-based
aims will use cellular thermal shift and immunofluorescence of interferon treated cells as early markers of target
engagement (Proteomics Core, In Vitro Virology Core). We will identify biomarkers by comparing RNAseq,
proteomics, phosphoproteomics and ADP-Ribosylation AP-MS of compound treated cells to mutant
macrodomains (both as a transgene and in the context of virus). During these activities, we will continue
addressing aspects of permeability, off target effects, and other liabilities with the Medicinal Chemistry Core.
We will progress to animal models compounds with cellular effects on replication with validated target
engagement. Lead molecules with validated target engagement and minimal pharmacokinetic liabilities will allow
us to test the effectiveness of candidate molecules in animal models of SARS-CoV-2 and CHIKV (In Vivo
Virology Core). Based on previous studies in animal models with catalytically inactive macrodomain mutant
viruses, we will prioritize molecules that drop viral load by at least 100-fold. Our work will generate a target
package for further development by our industrial partner, Roche. The lessons of targeting SARS-CoV-2 and
CHIKV macrodomains will be applicable to developing future agents against macrodomains in other viruses and
those implicated in human disease.
项目5:使用基于结构的设计抑制病毒大域
概括
病毒宏domain通过去除宿主的ADP-核糖基化修饰来对抗宿主免疫反应
蛋白质,对干扰素和许多其他信号通路产生重要影响。先前的实验
在使用野生型和催化死亡的SARS-COV和Chikungunya病毒(CHIKV)的细胞和动物模型中
大域验证这些蛋白质是潜在的药物靶标。但是,不存在病毒抑制剂
大域。使用高吞吐量基于X射线的片段屏幕和对接的集成,我们有
鉴定出200多个与SARS-COV-2宏域(MAC1)的粘合剂。我们随后的测定指导
开发第一个结构表征的工具化合物,该化合物比底物ADP-
核糖。此外,我们还利用化学知识来通过对接来发现其他脚手架。在
该建议,我们使用生化测定法通过基于结构的设计方法提高化合物
针对肽结合和催化功能。为了识别针对Chikv Macrodomain的起点,我们
将执行新的基于X射线晶体学的片段屏幕并执行超大对接活动
(筛选核心)。我们的计划是设计对人类大域的效力低下的化合物和
利用药物化学来推动对病毒宏构域的效力。我们的早期活动将确定
体外具有高效力的多个替代脚手架以进展到靶向细胞。我们的基于单元的
AIMS将使用干扰素处理细胞的细胞热偏移和免疫荧光作为目标的早期标记
参与(蛋白质组学核心,体外病毒学核心)。我们将通过比较RNASEQ来识别生物标志物,
化合物处理细胞的蛋白质组学,磷蛋白质组学和ADP-核糖基化AP-MS
宏域(无论是转基因还是病毒的背景)。在这些活动中,我们将继续
通过药物化学核心解决渗透率,关闭目标效应和其他负债的各个方面。
我们将发展为具有细胞对复制作用的动物模型化合物,并具有经过验证的目标
订婚。具有验证目标参与和最少药代动力学负债的铅分子将允许
我们测试候选分子在SARS-COV-2和CHIKV动物模型中的有效性(体内
病毒学核心)。基于先前在具有催化性障碍大域突变体的动物模型中的研究
病毒,我们将优先考虑将病毒负荷下降至少100倍的分子。我们的工作将产生目标
我们的工业合作伙伴罗氏(Roche)的进一步发展方案。定位SARS-COV-2和
CHIKV宏域将适用于在其他病毒和
那些与人类疾病有关的人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Solomon Fraser其他文献
James Solomon Fraser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Solomon Fraser', 18)}}的其他基金
Discovering and Manipulating Macromolecular Conformational Ensembles
发现和操纵大分子构象整体
- 批准号:
10710024 - 财政年份:2022
- 资助金额:
$ 298.81万 - 项目类别:
Equipment for Discovering and Manipulating Macromolecular Conformational Ensembles
发现和操纵大分子构象整体的设备
- 批准号:
10797971 - 财政年份:2022
- 资助金额:
$ 298.81万 - 项目类别:
Discovering and Manipulating Macromolecular Conformational Ensembles
发现和操纵大分子构象整体
- 批准号:
10406110 - 财政年份:2022
- 资助金额:
$ 298.81万 - 项目类别:
The Impact of Mutation on the Conformations and Recognition of Ubiquitin
突变对泛素构象和识别的影响
- 批准号:
8538838 - 财政年份:2011
- 资助金额:
$ 298.81万 - 项目类别:
The Impact of Mutation on the Conformations and Recognition of Ubiquitin
突变对泛素构象和识别的影响
- 批准号:
8335438 - 财政年份:2011
- 资助金额:
$ 298.81万 - 项目类别:
The Impact of Mutation on the Conformations and Recognition of Ubiquitin
突变对泛素构象和识别的影响
- 批准号:
8728042 - 财政年份:2011
- 资助金额:
$ 298.81万 - 项目类别:
The Impact of Mutation on the Conformations and Recognition of Ubiquitin
突变对泛素构象和识别的影响
- 批准号:
8213132 - 财政年份:2011
- 资助金额:
$ 298.81万 - 项目类别:
相似国自然基金
细胞核PD-L1的ADP核糖基化修饰调控肝癌细胞免疫逃逸的分子机制
- 批准号:82372806
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
ADP-核糖基化生物功能和作用机制探究
- 批准号:22377146
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
DNA损伤应答过程中p53的多聚ADP核糖基化修饰及转录激活功能的研究
- 批准号:32301212
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PARP4通过ADP核糖基化PIPs促进结直肠癌恶性进展的机制研究
- 批准号:82203272
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
PARP4通过ADP核糖基化PIPs促进结直肠癌恶性进展的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DeADP-ribosylation of host targets mediated by a bacterial effector
由细菌效应子介导的宿主靶标的 DeADP-核糖基化
- 批准号:
10667971 - 财政年份:2023
- 资助金额:
$ 298.81万 - 项目类别:
New insights into extracellular signal transduction
细胞外信号转导的新见解
- 批准号:
10566506 - 财政年份:2023
- 资助金额:
$ 298.81万 - 项目类别:
The Anti-Autophagy Arsenal of Legionella pneumophila
嗜肺军团菌的抗自噬阿森纳
- 批准号:
10679185 - 财政年份:2023
- 资助金额:
$ 298.81万 - 项目类别:
Signaling activation and constraints in maintaining immune homeostasis
维持免疫稳态的信号激活和限制
- 批准号:
10619849 - 财政年份:2023
- 资助金额:
$ 298.81万 - 项目类别: