Tackling Multifaceted Drug Design Problems with Lambda Dynamics Based Technologies
利用基于 Lambda Dynamics 的技术解决多方面的药物设计问题
基本信息
- 批准号:10709879
- 负责人:
- 金额:$ 38.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-24 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffinityAlgorithmsAlzheimer&aposs DiseaseAreaArtificial IntelligenceBindingBinding ProteinsChemicalsClinicalComplexCoupledDevelopmentDiseaseDrug DesignDrug TargetingDrug resistanceFree EnergyGenerationsGoalsLeadLigandsMachine LearningMethodsMissense MutationModelingModernizationModificationMolecularMultiple MyelomaMutationProcessPropertyProteinsResearchResearch ProposalsSamplingScientistSideSpecificityStructureSystemTechniquesTechnologyTestingTherapeuticThermodynamicsWorkanalogcombinatorialcomputerized toolscomputing resourcescostdeep learning algorithmdesigndrug candidatedrug discoveryfunctional groupguided inquiryimprovedinsightinterestlead optimizationmolecular dynamicsnovelpre-clinicalprotein protein interactionsimulationsmall moleculesuccesstherapeutic proteintool
项目摘要
Project Summary
Modern day drug discovery is a long and expensive process requiring teams of scientists, multiple years of
research, and millions of dollars to identify preclinical drug candidates suitable for clinical tests. The incorporation
of computational tools into drug discovery has proved an effective means to reduce these costs. All-atom
molecular dynamics simulations coupled with alchemical free energy calculations have been extremely beneficial
tools for studying structural and thermodynamic properties of protein-ligand complexes and optimizing drug
candidates for improved binding affinity to a target of interest. Lambda dynamics (LD), a newer alchemical free
energy method, facilitates the sampling of multiple perturbations to a chemical system, simultaneously, within a
single molecular dynamics simulation, overcoming inherent scalability limitations associated with conventional
free energy methods. To date, a variety of chemical perturbations, including diverse ligand functional group
transformations and protein side chain mutations, have been performed with (LD) on a single chemical entity,
e.g., a small molecule or protein, with much success. Tens to hundreds of chemical states have been efficiently
sampled using an order of magnitude less computational resources compared to conventional methods. This
proposal seeks support to build upon these findings and apply LD-based techniques to explore multifaceted
design problems in drug discovery featuring chemical modifications on multiple binding partners. Specifically,
three challenging areas of drug discovery will be investigated: (1) understanding and overcoming drug resistance
originating from missense mutations in a drug target, (2) characterizing protein-protein interactions and binding
specificities, and (3) automating the generation of novel, target-specific lead compound analogs by integrating
LD calculations with machine- or deep-learning algorithms. Success in these efforts will require searching
through large combinatorial chemical spaces that can only be accomplished with LD-based techniques. Model
protein-target systems of high therapeutic importance from Multiple Myeloma or Alzheimer’s Disease will be
investigated in accomplishing our goals. Thus, this work will assist in accelerating preclinical structure-based
drug design by enabling complex molecular design scenarios to be addressed in these devastating diseases.
项目摘要
现代药物发现是一个漫长而昂贵的过程,需要科学家团队,多年的研究,
研究和数百万美元,以确定临床前候选药物适合临床试验。掺入
将计算工具应用于药物发现已被证明是降低这些成本的有效手段。全原子
分子动力学模拟与炼金术自由能计算相结合,
用于研究蛋白质-配体复合物的结构和热力学性质以及优化药物的工具
用于改善与感兴趣的靶的结合亲和力的候选物。Lambda dynamics(LD),一个新的炼金术免费
能量方法,便于采样的多个扰动的化学系统,同时,在
单分子动力学模拟,克服了与传统方法相关的固有可扩展性限制,
自由能方法迄今为止,各种化学扰动,包括不同的配体官能团,
转化和蛋白质侧链突变,已经用(LD)在单个化学实体上进行,
例如,在一个实施例中,一种小分子或蛋白质,并取得了很大的成功。几十到几百种化学状态已经被有效地
与传统方法相比,使用数量级更少的计算资源进行采样。这
一项提案寻求支持,以这些发现为基础,并应用基于LD的技术来探索多方面的
药物发现中的设计问题,其特征在于对多个结合伴侣进行化学修饰。具体地说,
将研究药物发现的三个具有挑战性的领域:(1)了解和克服耐药性
源自药物靶标中的错义突变,(2)表征蛋白质-蛋白质相互作用和结合
特异性,和(3)通过整合新的靶特异性先导化合物类似物的自动生成
使用机器或深度学习算法进行LD计算。这些努力的成功将需要寻找
通过只能通过基于LD的技术实现的大型组合化学空间。模型
对于多发性骨髓瘤或阿尔茨海默病具有高度治疗重要性的蛋白质靶向系统将被
为实现我们的目标而努力。因此,这项工作将有助于加速基于临床前结构的
药物设计,使复杂的分子设计方案,以解决这些毁灭性的疾病。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification of nonhistone substrates of the lysine methyltransferase PRDM9.
- DOI:10.1016/j.jbc.2023.104651
- 发表时间:2023-05
- 期刊:
- 影响因子:4.8
- 作者:Hanquier, Jocelyne N.;Sanders, Kenidi;Berryhill, Christine A.;Sahoo, Firoj K.;Hudmon, Andy;Vilseck, Jonah Z.;Cornett, Evan M.
- 通讯作者:Cornett, Evan M.
Fast free energy estimates from λ-dynamics with bias-updated Gibbs sampling.
- DOI:10.1038/s41467-023-44208-9
- 发表时间:2023-12-21
- 期刊:
- 影响因子:16.6
- 作者:Robo, Michael T.;Hayes, Ryan L.;Ding, Xinqiang;Pulawski, Brian;Vilseck, Jonah Z.
- 通讯作者:Vilseck, Jonah Z.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONAH VILSECK其他文献
JONAH VILSECK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Research Grant














{{item.name}}会员




