Predicting Psychiatric Readmission with Machine Learning in Children and Adolescents
通过机器学习预测儿童和青少年的精神病再入院
基本信息
- 批准号:10710526
- 负责人:
- 金额:$ 4.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2024-09-18
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAddressAdherenceAdmission activityAdolescentAlgorithmsAntidepressive AgentsAnxietyAnxiety DisordersApplications GrantsChildChild Mental HealthChildhoodClinicalClinical DataDataData SetDepressed moodDepressive disorderDevelopmentDiseaseDisease remissionDrug KineticsElectronic Health RecordEmergency SituationEnsureEvaluationFamilyFoundationsFutureGenesGoalsHospital CostsHospitalizationHospitalized ChildInstitutionLength of StayMachine LearningMedical centerMental DepressionMental HealthMental disordersModalityModelingOutcomePatient CarePatient ReadmissionPatient-Focused OutcomesPatientsPediatric HospitalsPerformancePharmaceutical PreparationsPharmacogeneticsPopulationPrediction of Response to TherapyProcessPsychiatric therapeutic procedurePsychiatryQuality of lifeRecommendationResearchResearch TrainingRiskSelection for TreatmentsStructureTestingTrainingTreatment outcomeUnited StatesValidationWorkYouthanxiety reductionanxiety symptomsanxiousbehavioral impairmentclinical carecostdemographicsdepressed patientdepressive symptomsgenetic informationhigh dimensionalityhospital readmissionimprovedmachine learning algorithmmachine learning modelpatient populationpediatric patientspersonalized medicineprecision medicineprediction algorithmpredictive modelingreadmission riskresearch and developmentresponserisk predictionside effecttargeted treatmenttreatment planningtreatment responsetreatment risk
项目摘要
Project Summary/Abstract
Mental health disorders, including anxiety and depression, are common in pediatric patients and significantly
impair behavioral function and quality of life. For those with severe illness, patients may be hospitalized for more
targeted treatment. Despite medication and/or therapy treatment, children and adolescents are frequently
readmitted into psychiatric care as a result of numerous reasons, including treatment ineffectiveness, medication
side effects, and issues with adhering to the treatment plan for the disorder. In fact, 25% of youth are readmitted
within one year of discharge. Additionally, treatment for these disorders can be long and costly to patients and
their families, especially if patients are hospitalized or re-hospitalized, with patients enduring multiple medication
trials before finding the best medication. In order to address these issues with pediatric psychiatric readmission,
this research is focused on the development of a machine learning algorithm to predict psychiatric readmission
in children and adolescents.
The first aim of the proposed research is to develop and establish machine learning algorithms to predict
psychiatric readmission within 30-, 90-, and 180-days of discharge in pediatric patients with anxiety and
depressive disorders using demographic, clinical, and pharmacogenetic data in the electronic health record.
Multiple algorithms will be evaluated to determine the best predictive model for each outcome. Important factors
influencing readmission and model performance for each outcome will be assessed and compared. Additionally,
this will be the first machine learning evaluation of psychiatric readmission in pediatric patients. The second aim
will assess the generalizability of our models using external pediatric psychiatric admission data from a
comparable institution. This validation is significant to ensure our model is applicable to new patients if this were
to be implemented clinically to improve patient care.
The exploratory third aim of this proposal will assess the ability of a model to select commonly prescribed
antidepressant medications that reduce readmission risk. The model will predict the risk of readmission if a
patient had been prescribed each antidepressant, which will be compared to current prescribing practices. This
will evaluate the impact of antidepressants on future psychiatric readmission, which could aid in medication
selection.
This project will be the first to evaluate psychiatric readmission in children and adolescents through a machine
learning approach, with the goal to reduce psychiatric readmission, thereby improving patient care and quality
of life. Further, this research will lay the foundation for future studies evaluating additional data modalities and
outcomes as we move towards more personalized treatments and recommendations for pediatric patients with
mental health disorders.
项目摘要/摘要
精神健康障碍,包括焦虑和抑郁,在儿科患者中很常见,而且显著
损害行为功能和生活质量。对于那些病情严重的患者,患者可能会住院治疗更多时间。
有针对性的治疗。尽管接受药物和/或治疗,但儿童和青少年经常
由于多种原因重新进入精神病治疗,包括治疗无效、药物治疗
副作用,以及与坚持治疗计划有关的问题。事实上,25%的青年被重新接纳
在退伍后一年内。此外,这些疾病的治疗对患者来说可能是漫长和昂贵的,
他们的家人,特别是在患者住院或再次住院的情况下,患者忍受多种药物治疗
在找到最好的药物之前进行试验。为了解决儿科精神科重新入院的这些问题,
这项研究的重点是开发一种机器学习算法来预测精神病患者的再入院情况
在儿童和青少年中。
拟议研究的第一个目标是开发和建立机器学习算法来预测
儿科焦虑症患者出院后30天、90天和180天内再次精神科住院
使用电子健康记录中的人口统计学、临床和药物遗传学数据的抑郁症。
将对多种算法进行评估,以确定每个结果的最佳预测模型。重要因素
将评估和比较每种结果对再入院和模型性能的影响。另外,
这将是第一次对儿科患者的精神科再入院进行机器学习评估。第二个目标
将使用外部儿科精神科入院数据评估我们模型的普适性
类似的机构。这一验证对于确保我们的模型适用于新患者具有重要意义
将在临床上实施,以改善患者护理。
本提案的探索性第三个目标将评估模型选择共同处方的能力
降低再入院风险的抗抑郁药物。该模型将预测重新入院的风险如果
已经给病人开了每种抗抑郁药,这将与目前的处方做法进行比较。这
将评估抗抑郁药物对未来精神科再入院的影响,这可能有助于药物治疗
选择。
该项目将是第一个通过机器评估儿童和青少年精神科再住院的项目。
学习方法,目的是减少精神病患者的再入院,从而改善患者的护理和质量
生活的一部分。此外,这项研究将为未来评估更多数据模式和
随着我们走向更个性化的治疗和对儿童患者的建议,结果
精神健康障碍。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Artificial Intelligence and Machine Learning Approaches to Facilitate Therapeutic Drug Management and Model-Informed Precision Dosing.
- DOI:10.1097/ftd.0000000000001078
- 发表时间:2023-04-01
- 期刊:
- 影响因子:2.5
- 作者:Poweleit, Ethan A.;Vinks, Alexander A.;Mizuno, Tomoyuki
- 通讯作者:Mizuno, Tomoyuki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ethan Andrew Poweleit其他文献
Ethan Andrew Poweleit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ethan Andrew Poweleit', 18)}}的其他基金
Predicting Psychiatric Readmission with Machine Learning in Children and Adolescents
通过机器学习预测儿童和青少年的精神病再入院
- 批准号:
10604849 - 财政年份:2022
- 资助金额:
$ 4.12万 - 项目类别:
相似海外基金
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 4.12万 - 项目类别:
Evaluating Centralizing Interventions to Address Low Adherence to Lung Cancer Screening Follow-up in Decentralized Settings
评估集中干预措施,以解决分散环境中肺癌筛查随访依从性低的问题
- 批准号:
10738120 - 财政年份:2023
- 资助金额:
$ 4.12万 - 项目类别:
Suubi-Mhealth: A mobile health intervention to address depression and improve ART adherence among Youth living with HIV (YLHIV) in Uganda
Suubi-Mhealth:一种移动健康干预措施,旨在解决乌干达艾滋病毒感染者 (YLHIV) 青少年的抑郁症问题并提高抗逆转录病毒疗法的依从性
- 批准号:
10526768 - 财政年份:2022
- 资助金额:
$ 4.12万 - 项目类别:
Suubi-Mhealth: A mobile health intervention to address depression and improve ART adherence among Youth living with HIV (YLHIV) in Uganda
Suubi-Mhealth:一种移动健康干预措施,旨在解决乌干达艾滋病毒感染者 (YLHIV) 青少年的抑郁症问题并提高抗逆转录病毒疗法的依从性
- 批准号:
10701072 - 财政年份:2022
- 资助金额:
$ 4.12万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10679092 - 财政年份:2021
- 资助金额:
$ 4.12万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10432133 - 财政年份:2021
- 资助金额:
$ 4.12万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10327065 - 财政年份:2021
- 资助金额:
$ 4.12万 - 项目类别:
Leveraging Technology to Address Access and Adherence to Conventional Hospital-Based Pulmonary Rehabilitation in Veterans with COPD
利用技术解决慢性阻塞性肺病退伍军人接受和坚持传统医院肺康复的问题
- 批准号:
10377366 - 财政年份:2019
- 资助金额:
$ 4.12万 - 项目类别:
Leveraging Technology to Address Access and Adherence to Conventional Hospital-Based Pulmonary Rehabilitation in Veterans with COPD
利用技术解决慢性阻塞性肺病退伍军人接受和坚持传统医院肺康复的问题
- 批准号:
10574496 - 财政年份:2019
- 资助金额:
$ 4.12万 - 项目类别:
Targeted interventions to address the multi-level effects of gender-based violence on PrEP uptake and adherence among adolescent girls and young women in Kenya
有针对性的干预措施,以解决性别暴力对肯尼亚少女和年轻妇女接受和坚持 PrEP 的多层面影响
- 批准号:
9403567 - 财政年份:2017
- 资助金额:
$ 4.12万 - 项目类别:














{{item.name}}会员




