Predicting Psychiatric Readmission with Machine Learning in Children and Adolescents
通过机器学习预测儿童和青少年的精神病再入院
基本信息
- 批准号:10604849
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2024-09-18
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAddressAdherenceAdmission activityAdolescentAlgorithmsAntidepressive AgentsAnxietyAnxiety DisordersApplications GrantsChildChild Mental HealthChildhoodClinicalClinical DataDataData SetDepressed moodDepressive disorderDevelopmentDiseaseDisease remissionDrug KineticsElectronic Health RecordEmergency SituationEnsureEvaluationFamilyFoundationsFutureGenesGoalsHospital CostsHospitalizationInstitutionLength of StayMachine LearningMedical centerMental DepressionMental HealthMental disordersModalityModelingOutcomePatient CarePatient ReadmissionPatient-Focused OutcomesPatientsPediatric HospitalsPerformancePharmaceutical PreparationsPharmacogeneticsPopulationProcessPsychiatric therapeutic procedurePsychiatryQuality of lifeRecommendationResearchResearch TrainingRiskSelection for TreatmentsStructureTestingTrainingTreatment outcomeUnited StatesValidationWorkYouthanxiousbehavioral impairmentcase controlclinical carecostdemographicsdepressed patientdepressive symptomsgenetic informationhigh dimensionalityhospital readmissionimprovedineffective therapiesmachine learning algorithmmachine learning modelpatient populationpediatric patientspersonalized medicineprecision medicineprediction algorithmpredictive modelingreadmission riskresearch and developmentresponseside effecttargeted treatmenttreatment planningtreatment responsetreatment risk
项目摘要
Project Summary/Abstract
Mental health disorders, including anxiety and depression, are common in pediatric patients and significantly
impair behavioral function and quality of life. For those with severe illness, patients may be hospitalized for more
targeted treatment. Despite medication and/or therapy treatment, children and adolescents are frequently
readmitted into psychiatric care as a result of numerous reasons, including treatment ineffectiveness, medication
side effects, and issues with adhering to the treatment plan for the disorder. In fact, 25% of youth are readmitted
within one year of discharge. Additionally, treatment for these disorders can be long and costly to patients and
their families, especially if patients are hospitalized or re-hospitalized, with patients enduring multiple medication
trials before finding the best medication. In order to address these issues with pediatric psychiatric readmission,
this research is focused on the development of a machine learning algorithm to predict psychiatric readmission
in children and adolescents.
The first aim of the proposed research is to develop and establish machine learning algorithms to predict
psychiatric readmission within 30-, 90-, and 180-days of discharge in pediatric patients with anxiety and
depressive disorders using demographic, clinical, and pharmacogenetic data in the electronic health record.
Multiple algorithms will be evaluated to determine the best predictive model for each outcome. Important factors
influencing readmission and model performance for each outcome will be assessed and compared. Additionally,
this will be the first machine learning evaluation of psychiatric readmission in pediatric patients. The second aim
will assess the generalizability of our models using external pediatric psychiatric admission data from a
comparable institution. This validation is significant to ensure our model is applicable to new patients if this were
to be implemented clinically to improve patient care.
The exploratory third aim of this proposal will assess the ability of a model to select commonly prescribed
antidepressant medications that reduce readmission risk. The model will predict the risk of readmission if a
patient had been prescribed each antidepressant, which will be compared to current prescribing practices. This
will evaluate the impact of antidepressants on future psychiatric readmission, which could aid in medication
selection.
This project will be the first to evaluate psychiatric readmission in children and adolescents through a machine
learning approach, with the goal to reduce psychiatric readmission, thereby improving patient care and quality
of life. Further, this research will lay the foundation for future studies evaluating additional data modalities and
outcomes as we move towards more personalized treatments and recommendations for pediatric patients with
mental health disorders.
项目总结/摘要
心理健康障碍,包括焦虑和抑郁,在儿科患者中很常见,
损害行为功能和生活质量。对于那些病情严重的患者,
针对性治疗。尽管有药物和/或治疗,儿童和青少年经常
由于许多原因重新进入精神病护理,包括治疗无效,药物治疗,
副作用,以及坚持治疗计划的问题。事实上,25%的年轻人
出院后一年内。此外,对这些病症的治疗对患者来说可能是长期和昂贵的,
他们的家人,特别是如果患者住院或再次住院,患者接受多种药物治疗
在找到最好的药物之前进行试验。为了解决这些问题与儿科精神病再入院,
这项研究的重点是开发一种机器学习算法来预测精神病再入院。
在儿童和青少年中。
该研究的第一个目标是开发和建立机器学习算法来预测
在出院后30天、90天和180天内,患有焦虑和抑郁症的儿科患者的精神病再入院率
使用电子健康记录中的人口统计学、临床和药物遗传学数据评估抑郁症。
将对多种算法进行评估,以确定每种结局的最佳预测模型。重要因素
将评估和比较每个结果的影响再入院和模型性能。此外,本发明还
这将是第一次对儿科患者的精神病再入院进行机器学习评估。第二个目的
将评估我们的模型的普遍性,使用外部儿科精神病入院数据,从一个
类似的机构。该验证对于确保我们的模型适用于新患者具有重要意义,
在临床上实施,以改善患者护理。
本提案的第三个探索性目标将评估模型选择常用处方的能力
降低再入院风险的抗抑郁药物。该模型将预测再入院的风险,如果
患者已被处方每种抗抑郁药,将与当前处方实践进行比较。这
将评估抗抑郁药对未来精神病再入院的影响,这可能有助于药物治疗。
选择.
该项目将是第一个通过机器评估儿童和青少年精神病再入院的项目
学习方法,目标是减少精神病再入院,从而改善患者护理和质量
生命此外,这项研究将为未来评估其他数据模式的研究奠定基础,
随着我们朝着更个性化的治疗和建议儿科患者的结果,
心理健康障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ethan Andrew Poweleit其他文献
Ethan Andrew Poweleit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ethan Andrew Poweleit', 18)}}的其他基金
Predicting Psychiatric Readmission with Machine Learning in Children and Adolescents
通过机器学习预测儿童和青少年的精神病再入院
- 批准号:
10710526 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
相似海外基金
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Evaluating Centralizing Interventions to Address Low Adherence to Lung Cancer Screening Follow-up in Decentralized Settings
评估集中干预措施,以解决分散环境中肺癌筛查随访依从性低的问题
- 批准号:
10738120 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Suubi-Mhealth: A mobile health intervention to address depression and improve ART adherence among Youth living with HIV (YLHIV) in Uganda
Suubi-Mhealth:一种移动健康干预措施,旨在解决乌干达艾滋病毒感染者 (YLHIV) 青少年的抑郁症问题并提高抗逆转录病毒疗法的依从性
- 批准号:
10526768 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Suubi-Mhealth: A mobile health intervention to address depression and improve ART adherence among Youth living with HIV (YLHIV) in Uganda
Suubi-Mhealth:一种移动健康干预措施,旨在解决乌干达艾滋病毒感染者 (YLHIV) 青少年的抑郁症问题并提高抗逆转录病毒疗法的依从性
- 批准号:
10701072 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10679092 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10432133 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10327065 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Leveraging Technology to Address Access and Adherence to Conventional Hospital-Based Pulmonary Rehabilitation in Veterans with COPD
利用技术解决慢性阻塞性肺病退伍军人接受和坚持传统医院肺康复的问题
- 批准号:
10377366 - 财政年份:2019
- 资助金额:
$ 4万 - 项目类别:
Leveraging Technology to Address Access and Adherence to Conventional Hospital-Based Pulmonary Rehabilitation in Veterans with COPD
利用技术解决慢性阻塞性肺病退伍军人接受和坚持传统医院肺康复的问题
- 批准号:
10574496 - 财政年份:2019
- 资助金额:
$ 4万 - 项目类别:
Targeted interventions to address the multi-level effects of gender-based violence on PrEP uptake and adherence among adolescent girls and young women in Kenya
有针对性的干预措施,以解决性别暴力对肯尼亚少女和年轻妇女接受和坚持 PrEP 的多层面影响
- 批准号:
9403567 - 财政年份:2017
- 资助金额:
$ 4万 - 项目类别:














{{item.name}}会员




