Mechanism and restoration of altered firing in interneurons during early phase Alzheimer's Disease

阿尔茨海默病早期中间神经元放电改变的机制和恢复

基本信息

  • 批准号:
    10710182
  • 负责人:
  • 金额:
    $ 4.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Alzheimer’s Disease (AD) is the most prevalent form of dementia, causing neuronal synapse (spine) loss, brain atrophy, and eventual memory loss. Although AD is expected to grow from 5.8 million affected Americans to 13.8 million by 2050, there remains no effective preventative treatment. AD research has primarily focused on treating pathological amyloid-beta plaques and tau tangles. However, recent research suggests plaque-and-tangle pathology occurs relatively late in the disease. Recent studies in AD patients and models of disease have placed hyperexcitability, increased pyramidal neuron firing, prior to amyloid-beta plaque pathology, providing an early point for disease intervention. Pyramidal neuron hyperexcitability is a phenomenon that can result from an imbalance of inhibitory/excitatory inputs. Recent literature has shown accordingly that distinct interneuron subtypes are disrupted at this early disease state in mouse models, specifically fast-spiking parvalbumin (FS- PV) interneurons. FS-PV interneurons display altered action potential firing in the prodromal phase of plaque pathology in AD mouse models, resulting in pyramidal neuron hyperexcitability. It is known that firing patterns of FS-PV interneurons can be altered through changes in the expression or biophysical properties of specific voltage-gated channels (VGCs). This proposal seeks to determine 1. Mechanistic underpinnings of altered FS-PV interneuron firing, and 2. If restored firing is successful in preventing pyramidal neuron hyperexcitability and associated spine loss. In Aim 1, I predict altered FS-PV firing in pre-plaque AD is caused by biophysical changes in VGCs. To assess these potential changes, I will use electrophysiological methods to measure VGC biophysical changes. I will also isolate live FS-PV interneurons from wild-type and AD mouse models to assess VGC mRNA expression changes. In Aim 2, I predict restored firing of FS-PV interneurons in pre-plaque AD will prevent pyramidal neuron hyperexcitability and associated spine loss. In this aim, restored firing of FS-PV interneurons will be achieved using two approaches: chemogenetics and a cell- type-specific gene therapy. Pyramidal neuron hyperexcitability and morphology (spine loss) will be assessed using patch-clamp electrophysiology and two-photon imaging. The results of this proposal will provide an early point for AD intervention and a translatable therapeutic method with potential for neurodegeneration prevention.
项目摘要 阿尔茨海默氏病(AD)是痴呆的最普遍形式,其引起神经元突触(脊柱)丧失、脑损害、神经元损伤和神经元损伤。 萎缩最终导致记忆丧失尽管AD预计将从580万受影响的美国人增长到1380万, 到2050年,仍然没有有效的预防性治疗。AD研究主要集中在治疗 病理性β淀粉样蛋白斑和tau蛋白缠结。然而,最近的研究表明, 病理学在疾病中相对较晚发生。最近在AD患者和疾病模型中的研究表明, 在β淀粉样蛋白斑块病理学之前,过度兴奋,锥体神经元放电增加, 进行疾病干预。锥体神经元过度兴奋是一种现象,可能是由于 抑制性/兴奋性输入的不平衡。最近的文献表明,不同的中间神经元 在小鼠模型中,在这种早期疾病状态下亚型被破坏,特别是快速尖峰小清蛋白(FS- PV)中间神经元。FS-PV中间神经元在斑块前驱期显示改变的动作电位放电 在AD小鼠模型中的病理学,导致锥体神经元过度兴奋。众所周知, FS-PV中间神经元可以通过改变特定蛋白的表达或生物物理性质来改变。 电压门控通道(VGC)。该提案旨在确定1。改变的机制基础 FS-PV中间神经元放电,和2.如果恢复放电成功阻止锥体神经元 过度兴奋和相关的脊柱丧失。在目标1中,我预测斑块前AD的FS-PV放电改变是 由VGC的生物物理变化引起。为了评估这些潜在的变化,我将使用电生理学 测量VGC生物物理变化的方法。我还将从野生型和AD中分离活的FS-PV中间神经元, 小鼠模型以评估VGC mRNA表达变化。在目标2中,我预测FS-PV的恢复放电 斑块前AD中的中间神经元将防止锥体神经元过度兴奋性和相关的棘丢失。在这 目的,恢复FS-PV中间神经元的放电将使用两种方法实现:化学遗传学和细胞- 类型特异性基因治疗。将评估锥体神经元过度兴奋和形态学(棘丢失) 使用膜片钳电生理学和双光子成像。这项提案的结果将提供一个早期的 AD干预的点和具有神经变性预防潜力的可转化治疗方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anne Goettemoeller其他文献

Anne Goettemoeller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anne Goettemoeller', 18)}}的其他基金

Mechanism and restoration of altered firing in interneurons during early phase Alzheimer's Disease
阿尔茨海默病早期中间神经元放电改变的机制和恢复
  • 批准号:
    10537621
  • 财政年份:
    2022
  • 资助金额:
    $ 4.77万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 4.77万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 4.77万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 4.77万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 4.77万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 4.77万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 4.77万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了