Cell junction and nuclear forces as mediators of epithelial cell homeostasis
细胞连接和核力作为上皮细胞稳态的介质
基本信息
- 批准号:10709901
- 负责人:
- 金额:$ 43.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActomyosinAdherens JunctionBasic ScienceBiosensorCell AdhesionCell CycleCell NucleusCell ProliferationCell-Cell AdhesionCell-Matrix JunctionCellsChromatinChronicComplexCytoskeletonDesmosomesDevelopmentDiseaseDuct (organ) structureEpithelial CellsEpithelial PhysiologyEpitheliumFibrosisFluorescence Resonance Energy TransferFunctional disorderGoalsHomeostasisInflammationInflammatoryIntercellular JunctionsMalignant NeoplasmsMeasuresMechanical StressMediatorMesenchymal Stem CellsMorphogenesisNuclearNuclear LaminNuclear LaminaNuclear PoreNuclear Pore ComplexOrganPermeabilityProcessProliferatingProteinsResearchResearch ProposalsRoleSepsisStructureTight JunctionsTissuesTubeWorkcell dimensioncell typecohesionepithelial to mesenchymal transitionexperienceexperimental studyin vitro Modelin vivoinsightmechanical forcemigrationmonolayermouse modelnew therapeutic targetstem cell differentiationtumor progressionwound healing
项目摘要
Epithelial cells, which line both the inside cavities and outside of the body, exist in tissues as monolayers,
multilayers of cells, and three dimensional tube/duct structures. Proper formation and homeostasis of the
epithelium is critical for tissue and organ function; dysregulation of the epithelium is associated with epithelial
barrier loss (including sepsis), defective wound healing, and development and progression of cancer. Strong
cell-cell junctions are critical to the integrity of the epithelium, including cell cohesion, barrier function, and
ability to resist mechanical stress. Loss of junctions is associated with epithelial dysfunction including
inflammatory-induced increases in permeability and epithelial to mesenchymal transition (EMT). Although
formation cell-cell adhesions have been shown to be critical regulators of cell proliferation, migration, and
tissue organization, very little is known how cell-cell junction forces contribute to these processes. In addition,
the nucleus, which is physically connected to the cytoskeleton by the LINC (Linker of Nucleoskeleton and
Cytoskeleton) complex also experiences mechanical force resulting from both actomyosin contractility and
externally applied forces across cell-cell contacts and cell-matrix adhesions. Nuclear forces have been shown
to regulate the cell cycle, nuclear pore complex, and chromatin. Recent work by my group has also shown that
the LINC complex is a critical structure for epithelial homeostasis. This proposal examines the role of force
across proteins in both cell-cell junctions and the nucleus as mediators of epithelial homeostasis. The major
research goals of this R35 MIRA renewal are to 1) examine how mechanical forces regulate epithelial
homeostasis and morphogenesis, 2) identify the role of the LINC complex in epithelial homeostasis and
mesenchymal stem cell differentiation, and 3) investigate how forces across nuclear lamins and nuclear pore
complexes regulate epithelial physiology. Proposed experiments include in vitro models of ductal/glandular
epithelium using FRET-based tension biosensors to directly measure forces across tight junctions, adherens
junctions, and desmosomes, as well as the LINC complex, nuclear pores, and the nuclear lamina. New and
existing technical approaches will be used to modulate these structures, with the objective of identifying both
the upstream regulators of force and the downstream processes regulated by force. Additionally, in vivo
mouse models will be used to assess the role of the LINC complex and desmosomes in 3D epithelial tissue
homeostasis. This comprehensive study of cell adhesion and nuclear forces will greatly advance the
understanding of how epithelial homeostasis is regulated, which is relevant to the processes of wound repair,
inflammation, and epithelial tissue development and organization, as well as epithelial diseases, including
cancer, fibrosis, and chronic inflammation. Furthermore, results from this study concerning the role of forces
on the nuclear lamina and nuclear pore complexes will be relevant to nearly all cell types and tissues.
上皮细胞排列在体腔内外,以单层存在于组织中,
多层细胞和三维管/导管结构。正常形成和体内平衡
上皮细胞对于组织和器官功能至关重要;上皮细胞的失调与上皮细胞的增殖有关。
屏障丧失(包括脓毒症)、伤口愈合缺陷以及癌症的发展和进展。强
细胞-细胞连接对上皮的完整性至关重要,包括细胞凝聚力、屏障功能和
抵抗机械应力的能力。连接缺失与上皮功能障碍有关,包括
炎症诱导的渗透性和上皮向间质转化(EMT)的增加。虽然
形成细胞-细胞粘附已被证明是细胞增殖、迁移和增殖的关键调节因子。
组织组织,很少有人知道细胞间连接力如何促成这些过程。此外,本发明还提供了一种方法,
细胞核,其通过LINC(核骨架的连接体,
细胞骨架)复合物也经历由肌动球蛋白收缩性和
在细胞-细胞接触和细胞-基质粘附上施加的外力。核力量已经被证明
调节细胞周期、核孔复合体和染色质。我的小组最近的工作也表明,
LINC复合体是上皮细胞稳态的关键结构。这项建议审查了武力的作用,
细胞-细胞连接和细胞核中的蛋白质作为上皮稳态的介质。主要
这项R35 MIRA更新的研究目标是:1)研究机械力如何调节上皮细胞
稳态和形态发生,2)鉴定LINC复合物在上皮稳态中的作用,
间充质干细胞分化,以及3)研究细胞核核板层和核孔之间的力
复合物调节上皮生理学。提出的实验包括导管/腺体的体外模型,
上皮使用基于FRET的张力生物传感器直接测量穿过紧密连接、粘附
连接和桥粒,以及LINC复合物、核孔和核纤层。新的和
现有的技术方法将被用来调整这些结构,目的是识别
力的上游调节器和受力调节的下游过程。此外,在体内
小鼠模型将用于评估LINC复合物和桥粒在3D上皮组织中的作用
体内平衡这种对细胞粘附和核力的全面研究将极大地推动
了解如何调节上皮稳态,这与伤口修复过程相关,
炎症和上皮组织发育和组织,以及上皮疾病,包括
癌症纤维化和慢性炎症此外,从这项研究的结果有关的作用,部队
核板层和核孔复合体上的蛋白质的表达将与几乎所有的细胞类型和组织相关。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Elephant in the Cell: Nuclear Mechanics and Mechanobiology.
细胞中的大象:核力学和力学生物学。
- DOI:10.1115/1.4053797
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Jones,MichelleL;Dahl,KrisNoel;Lele,TanmayP;Conway,DanielE;Shenoy,Vivek;Ghosh,Soham;Szczesny,SpencerE
- 通讯作者:Szczesny,SpencerE
The Desmosomal Cadherin Desmoglein-2 Experiences Mechanical Tension as Demonstrated by a FRET-Based Tension Biosensor Expressed in Living Cells.
- DOI:10.3390/cells7070066
- 发表时间:2018-06-26
- 期刊:
- 影响因子:6
- 作者:Baddam SR;Arsenovic PT;Narayanan V;Duggan NR;Mayer CR;Newman ST;Abutaleb DA;Mohan A;Kowalczyk AP;Conway DE
- 通讯作者:Conway DE
Rho activation drives luminal collapse and eversion in epithelial acini
Rho 激活驱动上皮腺泡管腔塌陷和外翻
- DOI:10.1016/j.bpj.2023.01.005
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Narayanan, Vani;Purkayastha, Purboja;Yu, Bo;Pendyala, Kavya;Chukkapalli, Sasanka;Cabe, Jolene I.;Dickinson, Richard B.;Conway, Daniel E.;Lele, Tanmay P.
- 通讯作者:Lele, Tanmay P.
Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish.
- DOI:10.1038/s41467-017-01325-6
- 发表时间:2017-11-10
- 期刊:
- 影响因子:16.6
- 作者:Lagendijk AK;Gomez GA;Baek S;Hesselson D;Hughes WE;Paterson S;Conway DE;Belting HG;Affolter M;Smith KA;Schwartz MA;Yap AS;Hogan BM
- 通讯作者:Hogan BM
Modulation of E-Cadherin Function through the AmotL2 Isoforms Promotes Ameboid Cell Invasion.
通过AMOTL2同工型调节E-钙粘蛋白功能可促进运动细胞的侵袭。
- DOI:10.3390/cells12131682
- 发表时间:2023-06-21
- 期刊:
- 影响因子:6
- 作者:Subramani, Aravindh;Cui, Weiyingqi;Zhang, Yuanyuan;Friman, Tomas;Zhao, Zhihai;Huang, Wenmao;Fonseca, Pedro;Lui, Weng-Onn;Narayanan, Vani;Bobrowska, Justyna;Lekka, Malgorzata;Yan, Jie;Conway, Daniel E. E.;Holmgren, Lars
- 通讯作者:Holmgren, Lars
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel E Conway其他文献
Daniel E Conway的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel E Conway', 18)}}的其他基金
Cell junction and nuclear forces as mediators of epithelial cell homeostasis
细胞连接和核力作为上皮细胞稳态的介质
- 批准号:
10206611 - 财政年份:2016
- 资助金额:
$ 43.31万 - 项目类别:
Cell junction and nuclear forces as mediators of epithelial cell homeostasis
细胞连接和核力作为上皮细胞稳态的介质
- 批准号:
10628377 - 财政年份:2016
- 资助金额:
$ 43.31万 - 项目类别:
Measurement of Mechanical Tension Across Desmosomes
桥粒机械张力的测量
- 批准号:
9038542 - 财政年份:2016
- 资助金额:
$ 43.31万 - 项目类别:
Cell junction and nuclear forces as mediators of epithelial cell homeostasis
细胞连接和核力作为上皮细胞稳态的介质
- 批准号:
9142466 - 财政年份:2016
- 资助金额:
$ 43.31万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 43.31万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 43.31万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 43.31万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 43.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 43.31万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 43.31万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 43.31万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 43.31万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 43.31万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 43.31万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




