LOW-DOSE COMPUTED TOMOGRAPHY IMAGES AND CORRESPONDING DATA

低剂量计算机断层扫描图像和相应数据

基本信息

  • 批准号:
    10724040
  • 负责人:
  • 金额:
    $ 670.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-16 至 2025-09-15
  • 项目状态:
    未结题

项目摘要

The National Lung Screening Trial (NLST) demonstrated a substantial reduction in lung cancer mortality in subjects screened with low-dose computerized tomography (LDCT) as compared to chest radiographs; however, there was also a very high false positive rate (FPR) with the LDCT screens. The FPR was around 25% for the first two screening rounds, and 16% in the final round. In addition to the high FPR, there is a need for improvement in predicting risk among those with positive LDCT screens. In the NLST, of those with positive LDCT screens who went on to lung biopsy, about 40% did not have cancer. Conversely, there is also the problem of diagnostic uncertainty leading to delay in proceeding to biopsy among those who do have lung cancer. Among 21% of the NLST subjects who were retrospectively determined to have had lung cancer present at the baseline LDCT scan, it took over 18 months to diagnose the cancer. Therefore, the assessment of whom among those with positive screens needs to proceed to biopsy, and when, has room for major improvement. The high FPR of LDCT lung cancer screening, along with the limited ability in predicting risk levels, has three major detrimental effects as follows: 1) it constitutes a significant harm to patients undergoing screening in terms of short-term anxiety, increased radiation from follow-up CTs, and the potential for complications from invasive diagnostic procedures, 2) it contributes to increased health care costs and increased utilization of scarce health-care resources, and 3) it serves to lower the uptake of LDCT screening due to the perceived, and real, burden of false positives on patients and health care providers. Therefore, decreasing the FPR should serve to ameliorate these detrimental effects. Artificial intelligence (AI) is poised to transform medical imaging. In the past decade, significant progress has been made in computer aided detection (CAD) to assist with cancer detection and diagnosis, leading to a number of FDA-approved software tools. More recently, efforts are focused on deep learning to develop more accurate and integrated tools that can replicate or out-perform medical professionals. It is anticipated that AI can substantially reduce the FPR of LDCT screening while minimally affecting test sensitivity, thereby reducing diagnostic uncertainty.
国家肺部筛查试验(NLST)表明,与胸片相比,接受低剂量计算机断层扫描(LDCT)筛查的受试者肺癌死亡率大幅降低;然而,LDCT筛查的假阳性率(FPR)也很高。前两轮筛选的FPR约为25%,最后一轮为16%。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANNA FERNANDEZ其他文献

ANNA FERNANDEZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANNA FERNANDEZ', 18)}}的其他基金

SUPPORT SERVICES FOR SEER PROGRAM
SEER 计划的支持服务
  • 批准号:
    10974286
  • 财政年份:
    2023
  • 资助金额:
    $ 670.75万
  • 项目类别:
SEER PROGRAM PATHOLOGY AND RADIOLOGY REPORTS ACQUISITION ENHANCEMENTS_ Moonshot funded
SEER 计划病理学和放射学报告采集增强_Moonshot 资助
  • 批准号:
    10724936
  • 财政年份:
    2019
  • 资助金额:
    $ 670.75万
  • 项目类别:
SEER PROGRAM PATHOLOGY AND RADIOLOGY REPORTS ACQUISITION ENHANCEMENTS
SEER 计划病理学和放射学报告采集增强
  • 批准号:
    10403411
  • 财政年份:
    2019
  • 资助金额:
    $ 670.75万
  • 项目类别:
SEER PROGRAM PATHOLOGY AND RADIOLOGY REPORTS ACQUISITION ENHANCEMENTS
SEER 计划病理学和放射学报告采集增强
  • 批准号:
    10620591
  • 财政年份:
    2019
  • 资助金额:
    $ 670.75万
  • 项目类别:
SEER PROGRAM PATHOLOGY AND RADIOLOGY REPORTS ACQUISITION ENHANCEMENTS
SEER 计划病理学和放射学报告采集增强
  • 批准号:
    10164672
  • 财政年份:
    2019
  • 资助金额:
    $ 670.75万
  • 项目类别:

相似国自然基金

基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
  • 批准号:
    41904148
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
Raw-Image微小物体高精度位姿测量法
  • 批准号:
    61105029
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    $ 670.75万
  • 项目类别:
    Standard Grant
SBIR Phase I: Lightweight Learning-based Camera Image Signal Processing (ISP) for Photon-Limited Imaging
SBIR 第一阶段:用于光子限制成像的轻量级基于学习的相机图像信号处理 (ISP)
  • 批准号:
    2335309
  • 财政年份:
    2024
  • 资助金额:
    $ 670.75万
  • 项目类别:
    Standard Grant
Predicting abnormalities in abdominal organs through prognostic factors extracted from image data
通过从图像数据中提取的预后因素来预测腹部器官的异常
  • 批准号:
    24K21121
  • 财政年份:
    2024
  • 资助金额:
    $ 670.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Self-Supervised Sequential Biomedical Image-Omics
自监督序贯生物医学图像组学
  • 批准号:
    DE240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 670.75万
  • 项目类别:
    Discovery Early Career Researcher Award
Unifying Object Detection and Image Captioning using Vision-Language Knowledge Base for Open-World Comprehension
使用视觉语言知识库统一对象检测和图像描述以实现开放世界理解
  • 批准号:
    24K20830
  • 财政年份:
    2024
  • 资助金额:
    $ 670.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
  • 批准号:
    EP/X039277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 670.75万
  • 项目类别:
    Research Grant
A versatile machine learning image recognition software for automating synchrotron Macromolecular Beamlines
用于自动化同步加速器高分子束线的多功能机器学习图像识别软件
  • 批准号:
    BB/Z514329/1
  • 财政年份:
    2024
  • 资助金额:
    $ 670.75万
  • 项目类别:
    Research Grant
Explainable Medical Image Reports Generation Via Visual Concepts
通过视觉概念生成可解释的医学图像报告
  • 批准号:
    24K20795
  • 财政年份:
    2024
  • 资助金额:
    $ 670.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Travel Grant: 2024 Image Science Gordon Research Conference and Gordon Research Seminar
旅费补助:2024年图像科学戈登研究会议和戈登研究研讨会
  • 批准号:
    2420094
  • 财政年份:
    2024
  • 资助金额:
    $ 670.75万
  • 项目类别:
    Standard Grant
An image-based AI tool to identify stiffness- or age-related mechanotransduction abnormalities in vascular smooth muscle cells
一种基于图像的人工智能工具,用于识别血管平滑肌细胞中与硬度或年龄相关的机械转导异常
  • 批准号:
    BB/Y513994/1
  • 财政年份:
    2024
  • 资助金额:
    $ 670.75万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了