Next-Generation Thalamic Nuclei Visualization and Segmentation Methods
下一代丘脑核可视化和分割方法
基本信息
- 批准号:10745839
- 负责人:
- 金额:$ 49.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY/ABSTRACT
The thalamus is associated with critical neurological functions like regulation of consciousness, sleep, arousal,
and alertness in addition to relaying signals to the cortex. It is divided into multiple functionally specialized units
called thalamic nuclei which have been implicated in several psychiatric and neurodegenerative diseases such
as essential tremor, Parkinson’s disease, and schizophrenia.
Automated segmentation of thalamic nuclei from MRI data is not commonplace, due to their poor visibility in
conventional MRI. Segmentation methods based on Diffusion Tensor Imaging (DTI) have been limited by the
spatial resolution of the echo-planar imaging (EPI) acquisition and poor diffusion anisotropy in the grey-matter
dominated thalamus. As a result, most neuroimaging studies treat the thalamus as a single entity,
characterizing whole volume changes and using the whole thalamus as a seed for connectivity analyses,
significantly reducing sensitivity to nuclear-specific changes in pathology. We have developed automated multi-
atlas as well as deep-learning based thalamic nuclei segmentation techniques based on a novel white-matter-
nulled contrast scheme. The purpose of this grant is to develop the next-generation methods for thalamic
visualization and segmentation using multi-contrast imaging and cutting-edge image processing techniques
and testing it on pediatric as well as geriatric populations. This will be achieved using the following aims:
a) Development of a novel fast motion-robust multi-contrast imaging sequence which will provide co-registered
susceptibility weighted and MPRAGE images with different contrasts (e.g. white-matter and CSF-nulled).
b) Acquisition and creation of age-stratified atlases using the proposed multi-contrast sequence
c) Development of a multi-contrast deep-learning based automatic segmentation scheme
d) Development of a contrast-synthesis strategy to segment conventional MPRAGE and SWI data but
leveraging the multi-contrast atlas developed
e) Documenting changes in anatomical, functional and structural connectivity using data from publicly available
OASIS (geriatric) and ABIDE (pediatric) databases using the proposed segmentation methods.
The segmentation methods developed here can be used characterize thalamic atrophy in normal aging and in
disease populations with high sensitivity. The project is expected to yield new MR imaging biomarkers which
could be used in future studies for the identification and evaluation of novel therapeutic targets.
项目概要/摘要
丘脑与重要的神经功能相关,例如意识、睡眠、觉醒、
除了向皮层传递信号外,还具有警觉性。它分为多个功能专业化的单位
称为丘脑核,与多种精神疾病和神经退行性疾病有关,例如
如特发性震颤、帕金森病和精神分裂症。
从 MRI 数据中自动分割丘脑核并不常见,因为它们在
常规 MRI。基于扩散张量成像(DTI)的分割方法受到以下因素的限制:
平面回波成像 (EPI) 采集的空间分辨率和灰质中较差的扩散各向异性
丘脑占主导地位。因此,大多数神经影像学研究将丘脑视为一个单一的实体,
表征整个体积变化并使用整个丘脑作为连接分析的种子,
显着降低对病理学核特异性变化的敏感性。我们开发了自动化多
图集以及基于新型白质的基于深度学习的丘脑核分割技术
归零对比度方案。这笔赠款的目的是开发下一代丘脑方法
使用多重对比成像和尖端图像处理技术进行可视化和分割
并对儿童和老年人群进行测试。这将通过以下目标来实现:
a) 开发一种新颖的快速运动鲁棒性多对比成像序列,该序列将提供共同配准
具有不同对比度的磁敏感加权图像和 MPRAGE 图像(例如白质和 CSF 无效)。
b)使用所提出的多对比序列获取和创建年龄分层图集
c) 开发基于多对比深度学习的自动分割方案
d) 开发对比合成策略来分割传统的 MPRAGE 和 SWI 数据,但
利用开发的多对比图集
e) 使用公开数据记录解剖、功能和结构连接的变化
使用所提出的分割方法的 OASIS(老年)和 ABIDE(儿科)数据库。
这里开发的分割方法可用于表征正常衰老和
具有高敏感性的疾病人群。该项目预计将产生新的 MR 成像生物标志物
可用于未来的研究,以识别和评估新的治疗靶点。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manojkumar Saranathan其他文献
Manojkumar Saranathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 49.79万 - 项目类别:
Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 49.79万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 49.79万 - 项目类别:
Standard Grant
ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
- 批准号:
2347575 - 财政年份:2024
- 资助金额:
$ 49.79万 - 项目类别:
Standard Grant
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 49.79万 - 项目类别:
Cooperative Agreement
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 49.79万 - 项目类别:
Continuing Grant
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
- 批准号:
2339753 - 财政年份:2024
- 资助金额:
$ 49.79万 - 项目类别:
Standard Grant
CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
- 批准号:
2340973 - 财政年份:2024
- 资助金额:
$ 49.79万 - 项目类别:
Continuing Grant
Next-Generation Distributed Graph Engine for Big Graphs
适用于大图的下一代分布式图引擎
- 批准号:
DP240101322 - 财政年份:2024
- 资助金额:
$ 49.79万 - 项目类别:
Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
- 批准号:
DP240100465 - 财政年份:2024
- 资助金额:
$ 49.79万 - 项目类别:
Discovery Projects