Detection and Automatic Privacy-Protected Contact Tracing System Designed for COVID-19
专为 COVID-19 设计的检测和自动隐私保护接触者追踪系统
基本信息
- 批准号:10750367
- 负责人:
- 金额:$ 25.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract
The COVID-19 pandemic has rapidly spread across the world, bringing death, illness, disruption to daily
life, and economic crisis to businesses and individuals. The situation has been exacerbated after the schools
and companies reopened due to economic pressure. One of the key failures in COVID-19 containment is
underlined by the inability of our healthcare system in real-time detection in point-of-care (POC) and end-user
settings and precise tracing with privacy protection of active infections. The fundamental limitations of current
gene-based assays stem from their reliance upon amplification and detection of the viral genetic materials
even if there were no intact/infectious viruses. These tests require labor-intensive, laboratory-based sample
preparation protocols for virus lysis, extraction of genetic materials, purification of the isolated materials,
thermal cycling for enzymatic amplification of viral nucleic acid sequences, and interpretation of complex
results by professionals. To accurately determine the infectivity of the infected individuals, contaminated
objects and environments, and provide guidance for patients, public and authorities to better manage treatment
and containment, we seek a new paradigm for rapid and direct pathogen detection and identification in which
the intact virions are directly recognized through their distinct surface epitope features, and the resultant
fluorescent signal is immediately captured by an end-user smartphone, followed by automatic data transition
and event tracing in a blockchain-encrypted manner. To achieve specific recognition of SARS-CoV-2 virions,
we customized a designer DNA nanostructure (DDN)-based capture probe that harbors a macromolecular
“net” whose vertices precisely match the intra- and inter-spatial pattern of SARS-CoV-2 trimeric spike
glycoprotein clusters, and integrates a net-shaped array of SARS-CoV-2 spike specific-targeting aptamers.
This aptamer-DDN is designed for maximum affinity and specificity binding with spikes on intact virions in a
polyvalent and pattern-matching fashion. Once bound to intact virions, the DNA “nets” trigger the release of
fluorescence. This fluorescent signal can be readily and automatically detected by a membrane-shaped and
smartphone-based fluorimeter attached to the end-users' phone cameras. The acquired results will be
associated with user device IDs that are cyber-protected before tracing. We propose to combine DDN capture
probes and a smartphone device to develop and demonstrate a rapid, room temperature, single-step, virus-
specific, and ultrasensitive detection of SARS-CoV-2 virus, in which the detection results can be acquired
within 5 minutes upon exposure, at the user end, allowing tracing the presence of viruses without affecting user
privacy. The signal to result transition, result to ID association, individual track and interacting network tracing
will be blockchain-encrypted to ensure information security for individual privacy, while tracing information
would be available to health authority for public health benefits.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu Peng其他文献
Cost heterogeneity and peak prediction in collective actions
集体行动中的成本异质性和峰值预测
- DOI:
10.1016/j.eswa.2017.02.009 - 发表时间:
2017-08 - 期刊:
- 影响因子:8.5
- 作者:
Lu Peng - 通讯作者:
Lu Peng
Individual vision and peak distribution in collective actions
集体行动中的个人愿景和峰值分布
- DOI:
10.1016/j.cnsns.2016.10.005 - 发表时间:
2017-06 - 期刊:
- 影响因子:3.9
- 作者:
Lu Peng - 通讯作者:
Lu Peng
Structural effects of participation propensity in online collective actions: Based on big data and Delphi methods
网络集体行动参与倾向的结构效应:基于大数据和德尔菲法
- DOI:
10.1016/j.cam.2018.04.048 - 发表时间:
2018 - 期刊:
- 影响因子:2.4
- 作者:
Lu Peng - 通讯作者:
Lu Peng
Lu Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lu Peng', 18)}}的其他基金
Detection and Automatic Privacy-Protected Contact Tracing System Designed for COVID-19
专为 COVID-19 设计的检测和自动隐私保护接触者追踪系统
- 批准号:
10321003 - 财政年份:2020
- 资助金额:
$ 25.26万 - 项目类别:
Detection and Automatic Privacy-Protected Contact Tracing System Designed for COVID-19
专为 COVID-19 设计的检测和自动隐私保护接触者追踪系统
- 批准号:
10264617 - 财政年份:2020
- 资助金额:
$ 25.26万 - 项目类别:
Detection and Automatic Privacy-Protected Contact Tracing System Designed for COVID-19
专为 COVID-19 设计的检测和自动隐私保护接触者追踪系统
- 批准号:
10756670 - 财政年份:2020
- 资助金额:
$ 25.26万 - 项目类别:
相似海外基金
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 25.26万 - 项目类别:
Standard Grant
From corpus to target data as steps for automatic assessment of L2 speech: L2 French phonological lexicon of Japanese learners
从语料库到目标数据作为 L2 语音自动评估的步骤:日语学习者的 L2 法语语音词典
- 批准号:
23K20100 - 财政年份:2024
- 资助金额:
$ 25.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
- 批准号:
24K03872 - 财政年份:2024
- 资助金额:
$ 25.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automatic battery swapping cabinet development for scalability of e-mobility in Uganda
自动电池交换柜开发,以提高乌干达电动汽车的可扩展性
- 批准号:
10080435 - 财政年份:2024
- 资助金额:
$ 25.26万 - 项目类别:
Collaborative R&D
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 25.26万 - 项目类别:
Continuing Grant
CRII: SHF: Theoretical Foundations of Verifying Function Values and Reducing Annotation Overhead in Automatic Deductive Verification
CRII:SHF:自动演绎验证中验证函数值和减少注释开销的理论基础
- 批准号:
2348334 - 财政年份:2024
- 资助金额:
$ 25.26万 - 项目类别:
Standard Grant
Improving The Recycling Rate of Used Printer Cartridges Through Automatic Sortation
通过自动分类提高废旧打印机墨盒的回收率
- 批准号:
10113251 - 财政年份:2024
- 资助金额:
$ 25.26万 - 项目类别:
SME Support
Automatic Control Engineering (ACE) Network
自动控制工程(ACE)网络
- 批准号:
EP/X031470/1 - 财政年份:2024
- 资助金额:
$ 25.26万 - 项目类别:
Research Grant
Sonar Foundational Model for Representation Learning and Automatic Target Recognition Systems in Underwater Maritime Environment
水下海洋环境中表示学习和自动目标识别系统的声纳基础模型
- 批准号:
2903803 - 财政年份:2024
- 资助金额:
$ 25.26万 - 项目类别:
Studentship
EAGER: Exploring Automatic Optimization of Multi-tiered HPC Storage Systems via Practical Reinforcement Learning
EAGER:通过实用强化学习探索多层 HPC 存储系统的自动优化
- 批准号:
2412345 - 财政年份:2024
- 资助金额:
$ 25.26万 - 项目类别:
Standard Grant