A platform to identify in vivo targets of covalent cancer drugs in 3D tissues
识别 3D 组织中共价癌症药物体内靶标的平台
基本信息
- 批准号:10714543
- 负责人:
- 金额:$ 45.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAdoptedAffinityAgammaglobulinaemia tyrosine kinaseAnimalsAntineoplastic AgentsAspirinBindingBrainCardiotoxicityCardiovascular systemCellsChemicalsChemistryClinicalCommunitiesDataDevelopmentDoseDrug TargetingDrug or chemical Tissue DistributionDrug toxicityEnsureEnzyme Inhibitor DrugsEnzymesEpidermal Growth Factor ReceptorFAAH inhibitorFibroblast Growth Factor ReceptorsFluorescenceFoundationsFrightFutureGoalsHeartHistologicHumanHybridsImageIn SituJAK3 geneKRAS2 geneKnowledgeLabelLinkMalignant NeoplasmsMammalsMapsMethodsModelingMolecularMusNatureNeuronsOncogenicOncologyOrganOrganismPenicillinsPersonsPharmaceutical PreparationsPhosphotransferasesPositron-Emission TomographyPrognosisProteinsProteomicsProtocols documentationRecording of previous eventsResolutionSignal TransductionSpecificityStructureStructure-Activity RelationshipTechniquesTechnologyTherapeutic IndexThinnessTissue imagingTissuesToxic effectTranslationsTyrosine Kinase Inhibitorbody systembropiriminecancer therapycell typecellular targetingchemoproteomicsdata streamsdesigndrug discoveryfallshigh resolution imagingimaging approachimaging modalityin vivoin vivo imaginginhibitorinterestkinase inhibitorlead optimizationpreferenceprogramsscale upscreeningside effectsmall moleculesuccesstechnology developmenttoolwhole body imaging
项目摘要
Abstract
Covalent inhibitors represent some of the most successful drugs in human history, including aspirin and
penicillin. Recently, targeted covalent drugs have taken center stage as a compelling approach for achieving
major goals in oncology that have proven elusive for more classical reversible small molecules, including, for
instance, the selective inactivation of oncogenic kinases (BTK, EGFR, FGFR, JAK3) and, most notably, the
inhibition of the once-deemed undruggable KRAS protein. We are now in the midst of a resurgence of interest
in covalent drugs for their demonstrated capability to engage cancer targets that have been historically
considered undruggable. However, despite their proven success and inherent advantages of potency, there
has been a general reluctance to develop covalent drugs due to the concern of potential irreversible off-target
toxicity across different organ systems. Hence, a comprehensive understanding of both on and off-targets in
vivo is critical for covalent drugs. Currently, it is impossible to determine drug binding across a whole animal
with cellular and molecular resolution in mammals.
Building upon a recent breakthrough in tissue imaging termed CATCH (Clearing-Assisted Tissue click
Chemistry), we propose to develop a general platform for in vivo imaging of drug-target interactions with
unprecedented spatial precision by integrated applications of high-resolution whole-body imaging and
chemoproteomics (such as Activity-Based Proteomic Profiling, or ABPP) through the same covalent probes.
This way, every cell in a living mammal targeted by the drug (both on- and off-target) can be revealed in situ
and registered onto a defined protein map to screen and identify in vivo drug targets. The data stream
generated by this platform could rapidly link the rich knowledge of drug affinity to the therapeutic index,
therefore accelerating the translation of chemical activities into cancer therapies.
Our team has well-established and complementary expertise in chemoproteomics and tissue imaging to
ensure the successful execution of the project. In this IMAT R33 application, we plan to further develop
CATCH to profile in vivo targets of covalent kinase inhibitors. First, we will adapt CATCH to 3D somatic tissues
(Aim 1). Next, we will expand CATCH to an array of covalent BTK (Bruton’s tyrosine kinase) inhibitors (Aim 2).
Finally, we will profile dose-dependent in vivo cellular targets of BTK inhibitors in the mouse cardiovascular
system (Aim 3). We anticipate that these studies will establish in vivo CATCH methods for identifying targets of
covalent BTK inhibitors to better understand their efficacy and toxicity. More generally, the established platform
can be broadly applied to any covalent cancer drug for unbiased in vivo target identification. The pipeline,
analytics, and high-resolution drug target data will be rapidly disseminated for public access and exploration,
releasing an immediate, direct, and profound impact on covalent cancer drug discovery and refinement.
摘要
共价抑制剂代表了人类历史上一些最成功的药物,包括阿司匹林和
青霉素。最近,靶向共价药物已经作为实现靶向治疗的一种引人注目的方法占据了中心舞台。
肿瘤学中的主要目标已被证明是更经典的可逆小分子难以实现的,包括,
例如,致癌激酶(BTK、EGFR、FGFR、JAK 3)的选择性失活,最值得注意的是,
抑制曾经被认为不可用的KRAS蛋白。我们现在正处于一个复苏的兴趣,
在共价药物中,它们被证明具有与癌症靶点结合的能力,
被认为是不可抵抗的然而,尽管它们已被证明是成功的,而且具有内在的效力优势,
由于担心潜在的不可逆脱靶,
不同器官系统的毒性。因此,全面了解在靶和脱靶,
体内对于共价药物至关重要。目前,不可能确定整个动物的药物结合
在哺乳动物中具有细胞和分子分辨率。
基于最近在组织成像方面的突破,称为CATCH(清除辅助组织点击
化学),我们建议开发一个通用平台,用于药物-靶标相互作用的体内成像,
通过高分辨率全身成像的综合应用实现前所未有的空间精度,
化学蛋白质组学(如基于活性的蛋白质组学分析,或ABPP)通过相同的共价探针。
通过这种方式,可以原位显示药物靶向的活哺乳动物中的每个细胞(包括靶向和脱靶)
并配准到确定的蛋白质图谱上以筛选和鉴定体内药物靶点。数据流
通过这个平台产生的可以快速地将药物亲和性的丰富知识与治疗指标联系起来,
从而加速化学活性转化为癌症治疗。
我们的团队在化学蛋白质组学和组织成像方面拥有完善和互补的专业知识,
确保项目的顺利实施。在这个IMAT R33应用中,我们计划进一步开发
CATCH分析共价激酶抑制剂的体内靶点。首先,我们将使CATCH适应3D体细胞组织
(Aim 1)。接下来,我们将CATCH扩展到共价BTK(布鲁顿酪氨酸激酶)抑制剂阵列(目标2)。
最后,我们将描述BTK抑制剂在小鼠心血管系统中的剂量依赖性体内细胞靶点。
系统(目标3)。我们预计这些研究将建立体内CATCH方法,用于识别靶点,
共价BTK抑制剂,以更好地了解其功效和毒性。更普遍的是,
可广泛应用于任何共价抗癌药物的无偏体内靶点鉴定。管道,
分析和高分辨率药物靶点数据将迅速传播,供公众访问和探索,
对共价抗癌药物的发现和改进产生了即时、直接和深远的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BENJAMIN F CRAVATT其他文献
BENJAMIN F CRAVATT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BENJAMIN F CRAVATT', 18)}}的其他基金
Integrated ligand and target discovery by chemical proteomics for glioblastoma treatment.
通过化学蛋白质组学整合配体和靶点发现用于胶质母细胞瘤治疗。
- 批准号:
10652580 - 财政年份:2021
- 资助金额:
$ 45.07万 - 项目类别:
Integrated ligand and target discovery by chemical proteomics for glioblastoma treatment.
通过化学蛋白质组学整合配体和靶点发现用于胶质母细胞瘤治疗。
- 批准号:
10436295 - 财政年份:2021
- 资助金额:
$ 45.07万 - 项目类别:
Integrated ligand and target discovery by chemical proteomics for glioblastoma treatment.
通过化学蛋白质组学整合配体和靶点发现用于胶质母细胞瘤治疗。
- 批准号:
10211553 - 财政年份:2021
- 资助金额:
$ 45.07万 - 项目类别:
RP5: Chemical proteomic discovery of small-molecule probes for autophagy proteins
RP5:自噬蛋白小分子探针的化学蛋白质组学发现
- 批准号:
10364727 - 财政年份:2019
- 资助金额:
$ 45.07万 - 项目类别:
RP5: Chemical proteomic discovery of small-molecule probes for autophagy proteins
RP5:自噬蛋白小分子探针的化学蛋白质组学发现
- 批准号:
10573265 - 财政年份:2019
- 资助金额:
$ 45.07万 - 项目类别:
Chemical Proteomic Platforms for Radically Expanding Cancer Druggability
用于从根本上扩展癌症成药性的化学蛋白质组学平台
- 批准号:
10248401 - 财政年份:2018
- 资助金额:
$ 45.07万 - 项目类别:
Chemical Proteomic Platforms for Radically Expanding Cancer Druggability
用于从根本上扩展癌症成药性的化学蛋白质组学平台
- 批准号:
10477261 - 财政年份:2018
- 资助金额:
$ 45.07万 - 项目类别:
Chemical Proteomic Platforms for Radically Expanding Cancer Druggability
用于从根本上扩展癌症成药性的化学蛋白质组学平台
- 批准号:
10693197 - 财政年份:2018
- 资助金额:
$ 45.07万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 45.07万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 45.07万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 45.07万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 45.07万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 45.07万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 45.07万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 45.07万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 45.07万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 45.07万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 45.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)