Leveraging biobank-scale whole-genome sequencing for polygenic risk prediction
利用生物库规模的全基因组测序进行多基因风险预测
基本信息
- 批准号:10716534
- 负责人:
- 金额:$ 44.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAllelesBase PairingBloodBlood CellsCardiovascular DiseasesChromosome abnormalityClonal ExpansionCollaborationsComplexComputer softwareComputing MethodologiesDNADNA SequenceDataData SetDiseaseEuropean ancestryFrequenciesFutureGene FrequencyGenesGeneticGenetic DiseasesGenetic ModelsGenetic PolymorphismGenetic RiskGenetic VariationGenomeGenomicsGenotypeHaplotypesHematologic NeoplasmsHeritabilityIndividualInheritedLettersLinkMediatingMemoryMethodologyMethodsModelingMutationMutation DetectionPerformancePoint MutationPopulationPublicationsResearchResolutionResourcesRiskSNP arraySamplingSingle Nucleotide PolymorphismSomatic MutationSourceStatistical AlgorithmStatistical MethodsStructureTherapeuticTrainingVariantage relatedanalytical methodbiobankcardiovascular risk factorcausal variantcohortcostdisorder riskempowermentexperiencegenetic risk factorgenetic variantgenome sequencinggenome-widegenome-wide analysishigh riskhuman diseaseimprovedinsertion/deletion mutationpolygenic risk scoreprecision medicinerare variantrisk predictionrisk varianttraitwhole genome
项目摘要
Project Summary/Abstract
Whole-genome sequencing of population biobank cohorts holds great promise for enabling accurate prediction
of genetically-mediated risk for heritable human diseases and traits. Such information has the potential to be a
powerful resource for precision medicine, informing preventative and therapeutic decisions. To more fully
realize this potential, new statistical methods are needed to incorporate all genetic variants – including
structural variants, blood-derived somatic mutations, and rare SNPs and indels – into genetic risk models.
These classes of genetic variation, which are known to include many variants with large effects on disease
risk, can be detected in high-coverage whole-genome sequencing data now being generated at biobank scale.
However, such variants have not been accessible from previous genetic data sets (which have relied on SNP-
array genotyping and imputation). Consequently, existing methods for polygenic prediction have typically
considered only common inherited SNPs and indels.
We propose to develop a suite of statistical methods to enable these additional classes of genetic variants to
be incorporated into models of genetic risk, thereby improving predictive power. For variant types that are
currently difficult to ascertain even from whole-genome sequencing data – including somatic mutations and
some types of structural variants – we will develop new genotyping algorithms that improve statistical inference
by harnessing information across large sequenced cohorts. We will efficiently integrate information across all
variant types into genetic risk models using fast Bayesian regression methods. We will apply these approaches
to train genetic risk models for common diseases using data from very large biobank sequencing projects.
This project will have three specific aims. First, we will develop and apply methods for incorporating structural
variants into polygenic scores. Many structural variants are known to confer substantial disease risk but are at
imperfectly modeled by existing polygenic scores, such that directly including such variants will increase
prediction accuracy and cross-ancestry transferability. Second, we will develop and apply methods for
incorporating somatic mutations detectable in blood-derived DNA into genetic risk models. Such acquired
mutations, often indicative of clonal expansions of blood cells, provide an orthogonal source of risk compared
to the inherited variants considered by standard polygenic scores. Third, we will develop and apply efficient
computational methods for training polygenic score models on biobank-scale sequencing data. These methods
will allow model-fitting to be performed on individual-level genetic data, optimizing prediction accuracy. We
anticipate that these efforts will significantly improve performance of genetic risk models trained on current and
future population-scale whole-genome sequencing data sets.
项目总结/文摘
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Po-Ru Loh其他文献
Po-Ru Loh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Po-Ru Loh', 18)}}的其他基金
Identifying structural variants influencing human health in population cohorts
识别影响人群健康的结构变异
- 批准号:
10889519 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
Fast and powerful extensions of mixed model methods for GWAS
GWAS 混合模型方法的快速而强大的扩展
- 批准号:
8712922 - 财政年份:2014
- 资助金额:
$ 44.75万 - 项目类别:
Fast and powerful extensions of mixed model methods for GWAS
GWAS 混合模型方法的快速而强大的扩展
- 批准号:
8974184 - 财政年份:2014
- 资助金额:
$ 44.75万 - 项目类别:
Fast and powerful extensions of mixed model methods for GWAS
GWAS 混合模型方法的快速而强大的扩展
- 批准号:
9186420 - 财政年份:2014
- 资助金额:
$ 44.75万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 44.75万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 44.75万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 44.75万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 44.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 44.75万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 44.75万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 44.75万 - 项目类别:














{{item.name}}会员




